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Abstract
Combinatorial matrices have recently been studied by Ford and the Author. We here add a

fourth kind of Ford symbol, which carries both Projective and Spectral connotations. And unlike
the previous three, manages to have the very simplest multiplicative property. Revealing that
Combinatorial matrices’ eigenvalues combine in the simplest possible way under both products and
sums: an uncommon feature among square matrices. K × K Combinatorial matrices support
not only K-square eigenexpansions but also 2-square eigenexpansions. This is underpinned by
Combinatorial matrices mostly consisting of an isotropic block. A new style of proof for each K ’s
Combinatorial matrices commuting with each other is also included.
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1 Introduction
Definition 1 A Combinatorial matrix [1] is a square matrix of size K of the following form.

C :=


x + y x . . . x

x
...

... x
x . . . x x + y

 = y I + x 1 = ( x + y( x + y, y )K . (1)

Remark 1 While Combinatorics often involves x, y ∈ Z or N , Flat Geometry applications [9,
10, 11] and Linear Algebra calculations [14] extend interest to Q and R . Here I is the identity
matrix and 1 is the matrix of 1s . Also ( , )K is the Ford symbol of the zeroth kind [13, 14], a
truer name for which is irreducible symbol, in the sense of Representation Theory. With reference to
the trace–tracefree basis: now partnering I with T : 1 off-diagonal and 0 on-diagonal. Whenever
we work with a fixed K , we simplify this notation to ( , ).

Remark 2 For a fixed K , the totality of these constitute the arena cMK(2) : a 2-d vector space
(v.s.) [13].

Remark 3 Combinatorial matrices were expanded relative to various other bases in [11, 13]. We now
consider a further such, which accumulates various interesting properties.

Previously used bases all involve I . We now bring in
K−1 1 = K−1 ( 1, 1 ) , (2)

which we interpret as follows. As the dyad of normalized equal-entries vectors
n n . (3)

Which is furthermore an orthogonal projector
P ⊥ (4)

onto the average count acted upon’s [14] 1-d direction space
Dir(1) . (5)

Whose complement is k-d difference space [14]
Dif(k) . (6)

With corresponding orthogonal projector
P ⊥⊥ = P = I − n n . (7)
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This rests upon Combinatorial matrices having [14] an at least k-fold degenerate eigenvalue. Where
k := K − 1 . (8)

Which rests in turn upon Combinatorial matrices forcing [14]. at least an O(k)-symmetry: a partial
isotropy condition. In the generic case, this is the whole symmetry group, and the corresponding k-d
eigenspace is difference space.

The only alternative to this is conflation with the remaining eigenvalue. Yielding an all-encompassing
K-fold degenerate eigenspace corresponding to the O(K) -symmetry: total isotropy. Now resting

upon the whole matrix being O(K)-symmetry isotropic [14].

The above partial isotropy is of codimension 1 . On the one hand, this requires K ≥ 3 for nontrivial
realization On the other hand, this is the second-largest possible isotropy, and rapidly becomes a sizeable
feature with increasing K .

Remark 4 In the N -body problem context, (5) is the centre of mass (CoM) position label [7, 19].
While (7) is the CoM-removing projector And (6) takes the form of relative label space

LRel(n) = Rn : (9)

the space of linearly-independent (LI) separation vector labels. Labels first enter by denoting the
points(-or-particles) by 1, 2, ... . Leading to the separations themselves getting labelled by their
bounding pairs of points, e.g. 1 2 . CoM position carries both a spatial vector index and a point label
index. So does the relative space of LI separations [7, 19]. But only the label part plays an active role:
the full version just tensors everything with the spatial identity matrix [7, 19].

In this context, P is furthermore numerically (if not Physical-dimensionally) the Lagrange matrix
[7, 19, 17]. The overarching theme is that upon translating to the CoM frame, all remaining degrees of
freedom are relative separations. With the Lagrange matrix arising by [19] extremizing the arbitrary-
translation correction to the inertia quadric with respect to its auxiliary translation variable. This
is how translations, CoMs and separations are inter-related. For the general Combinatorial matrix,
upon translating to the average of the counts that are being acted upon, all remaining freedom lies
correspondingly in differences of counts [14].

Remark 5 The current Article’s incipient idea is to take P ⊥ and
P = K−1 ( k, −1 ) (10)

as our basis. Which is a priori motivated by its being privileged by both of its basis matrices being
projectors. The below results then build up additional a posteriori motivations.

2 Eigentheory results
Lemma 1

( x + y, x ) P = y P = λ P =: λk P . (11)

( x + y, x ) P ⊥ = ( K x + y ) P ⊥ = λ⊥ P ⊥ =: λ1 P ⊥ . (12)

Where λ is the k-fold degenerate eigenvalue λk : with algebraic multiplicity k [14]. While λ⊥ is
the complementary eigenspace’s lone eigenvalue λ1 : with algebraic multiplicity 1 .

Corollary 1
( x + y, x ) = λ P + λ⊥ P ⊥ . (13)

Naming Remark 1 This prompts introducing a fourth ‘Ford symbol’: the Projective symbol
{ λ, λ⊥ }K . (14)

Where the first entry is the P component and the second the P ⊥ component. But these entries are
furthermore the spectrum of eigenvalues (without multiplicities). And so another truer name for it is
Spectral symbol. That ≤ 2 distinct eigenvalues comprise the whole eigenspectrum is underpinned by
Remark 3 as follows. Since Combinatorial matrices must have a ≥ k-fold degenerate eigenvalue, the
Pigeonhole Principle only leaves room for ≤ 2 distinct eigenvalues. Since this degeneracy in turn
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rests upon an at least O(k)-symmetry – total or codimension-1 isotropy – a third name is motivated:
isotropy symbol.

Lemma 2
{ p λ1, p λ2 ⊥ } = p { λ1, λ2 ⊥ } . (15)

{ λ1, λ1 ⊥ } + { λ2, λ2 ⊥ } = { λ1 + λ2, λ1 ⊥ + λ2 ⊥ } . (16)

{ λ1, λ1 ⊥ } { λ2, λ2 ⊥ } = { λ1 λ2, λ1 ⊥ λ2 ⊥ } . (17)

Remark 1 So passing to using our symbol preserves the simplest linearity properties, while attaining
the simplest product formula. Nor is it at all usual for the eigenvalues of the product of 2 matrices
to be the product of the eigenvalues of the 2 matrices. And yet by the above this holds for any 2
Combinatorial matrices of the same size... And similarly with ‘sum’ in place of ‘product’!

Naming Remark 2 Let us celebrate by, firstly, placing a fourth name on the Combinatorial matrix
symbol { , } : multiplicative symbol. Secondly, by pointing out that at present this symbol ‘conceptu-
ally outnumbers’ our irreducible symbol ( , ) : by 4 to 1 . I.e. it is known to have multiplicative,
Projective, Spectral and isotropic significance. To its rival carrying Representation-Theoretic signifi-
cance. By the above confluence of properties from across Mathematics, we call { , } the Combinatorial
matrix Kallista symbol. And thirdly by extending to the following.

Corollary 2
R∑

i = 1
{ λi, λi ⊥ } =

{
R∑

i = 1
λi,

R∑
i = 1

λi ⊥

}
,

R∏
i = 1

{ λi, λi ⊥ } =
{

R∏
i = 1

λi,

R∏
i = 1

λi ⊥

}
. (18)

♠ ⋄ ♣

Remark 2 Next working with the quadratic form version – acting on an input vector of numbers K ,
we readily obtain the following results. In the N -body problem case, it turns out to be quite useful
[10, 19] to take K = S : the vector of side-lengths squared. These are 1 dependency away from being
LI. But there are also K of them, while we are only expecting k differences. So well-determinedness
is attained.

Proposition 1 2-squares expansion.
||K||{ λ, λ⊥ }

2 = λ⊥ ||K||P ⊥
2 + λ ||K||P 2 = λ⊥ K−1 U2 + λ ||K||P 2 . (19)

Proposition 2 The K-squares expansion in K(K) network choice of basis is as follows.

||K||{ λ, λ⊥ }
2 = λ⊥ K−1 U2 + λ

k∑
q = 1

q−1 Q−1

(
k∑

p = q

Kp − q KQ

)2

. (20)

Remark 3 In the N -body problem context, firstly the unit-normalized average of the counts U is
realized by a quantity proportional to R : the square of the radius of gyration. Secondly, the first
distinct K network is called the Jacobi-K [3, 17, 19] for the 4-body problem. This corresponds to
[6, 12] the straight-3-path unlabelled rooted binary tree (URBT) [2]. The subsequent K networks are
the corresponding straight-path URBTs for each larger path. [14] showed that these bases remain mean-
ingful for arbitrary Combinatorial matrices. Thirdly, the above codimension-1 isotropy corresponds in
the N -body setting to the O(n) group of internal rotations alias democracy transformations [4].

Corollary 3

||K||{ λ, λ⊥ }
2 = λ⊥ K−1 + λ ||K||P 2 = λ⊥ K−1 + λ

k∑
q = 1

q−1 Q−1

∣∣∣∣∣
∣∣∣∣∣

k∑
p = q

Kp − q KQ

∣∣∣∣∣
∣∣∣∣∣
2

. (21)

Remark 4 Here we have introduced the ratio variables
K := U−1 K . (22)

3



Remark 5 On the one hand, the K-squares expansion uses the whole eigenspectrum: including
algebraic multiplicity. And rests upon the following decomposition of the v.s. V(K) of vectors acted
on by our size-K Combinatorial matrices.

V(K) = ImP ⊥(V(K)) ⊕ ImP (V(K)) = Dir(1) ⊕ Dif(k) . (23)

On the other hand, the 2-squares expansion uses the following 2-d v.s. decomposition.
cMK(2) = Dir(1) ⊕ Dif(1) . (24)

3 Examples
Examples 1-7: Using our Kallista symbol, The CoM-removing projector itself is

P = { 1, 0 } . (25)

Its complement is
P ⊥ = { 0, 1 } . (26)

The zero matrix is
O = { 0, 0 } . (27)

And the identity matrix is
I = { 1, 1 } . (28)

The previous two are both examples of isotropic matrices, the general case of which is
r { 1, 1 } , r ∈ R . (29)

The fundamental 2-simplex matrix, shared by the triangle inequality, the cosine rule, and Heron’s
formula, [8, 9, 10, 11] is

F = { -2, 1 } . (30)

The Apollonius involutor [8, 10, 11] is
J = { -1, 1} . (31)

Example 8 Of sums of K squares. In the K = N = 3-body problem context, Proposition 2
returns Aniso2 + Anelp2 for its last 2 squares [8, 9, 10, 19]. Standing for anisoscelesness: departure
from isoscelesness. And departure from being in equilateral proportion, with reference to the base to
median ratio. In terms of side-lengths2 A, B, C ,

Aniso = A − B√
2

, Anelp = A + B − 2 C√
6

. (32)

Generalizing from sides-lengths2 in the 3-body problem to differences of primary objects in Combina-
torics, we write U in place of R . Not Aniso but Ind , in the sense of induced from a K = 2
difference. And not Anelp but Comp , in the sense of orthonormal complement.

Proposition 2 recovers as a subcase

||K||( x + y, x )
2 = 3 x + y

3 U2 + y

2

[
( A − B )2 + ( A + B − 2 C )2

3

]
. (33)

Which can also be written in the following generalized Euler 3-cycle form.
||K||( x + y, x )

2 = 3 x + y

3
∑

3-cycles
A ( A + 2 B ) + 2 y

3
∑

3-cycles
A ( A − B )

=
∑

3-cycles
A [ ( x + y ) A + 2 x B ] . (34)

Setting x and y to match F , J and P in turn recovers some previous results from [8, 11]. In
particular, since P is itself the projector, the eigenvalue λ⊥ corresponding to P ⊥ is 0 . And so
the U = R contribution to P ⊥ drops out entirely.
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4 Algebras

Figure 1:

Proposition 3 Under multiplication, P and P ⊥ alongside the identity I and zero O form the
commutative monoid [5] whose times table is in Fig 1.

Proposition 4 The above four inputs also form a zero-commutator algebra.

Remark 1 Proposition 3’s times table follows from just the identity property, the projector property
and projector complementarity. Proposition 3’s inputs reflect that, on the one hand, we can freely
append an identity element. On the other hand, we are forced to include the zero since we discover it
as the product of our 2 projectors.

Remark 2 For Proposition 4, the only nontrivial bracket to check is
[ P , P ⊥ ] = P · P ⊥ − P ⊥ · P = O − O = O .

Where step 1 is by the definition of commutator. And step 2 makes 2 uses of complementarity.

Remark 3 The current Section is the generalized Combinatorial matrices’ counterpart of the triangle (or
more generally 2-simplex) algebras presented in [11]. And of various quadrilateral algebras presented in
[15, 16, 18]. A large Algebraic simplification in [11] turns out to be underpinned by the K = N = 3
subcase of P ⊥ .

5 Conclusion
Remark 1 A first motivation for our Kallista symbol for Combinatorial matrices is that it corresponds
to the Projective choice of basis.

Remark 2 Our second motivation is Spectral: our basis displays the eigenvalues as its components.
And clarifies that these combine particularly simply for Combinatorial matrices under both addition
and multiplication. General square matrices’ eigenvalues do not have these properties! By which our
basis displays a 2-term eigenexpansion. This is rendered possible by all Combinatorial matrices having
an eigenvalue that is at least k-fold degenerate by symmetry. Due to the underlying at-least O(k)-
symmetry, and thus a total or codimension-1 isotropy, giving a third Group-Theoretic motivation.

Remark 3 Using our new basis, the product rule (17) and the commutative monoid concurrently
manage to take particularly simple forms. In contrast to the various basis choices in [11], the current
Article’s commutative monoid’s is distinctive by its times table necessarily involving the zero. That
compatible Combinatorial matrices always commute was recently pointed out by Ford [13]. Proposition
4 however provides an alternative style of proof for this! I.e. every Combinatorial matrix can be written
as the weighted sum of a complementary pair of projectors. Which commute with each other by
complementarity, and so all compatible-sized Combinatorial matrices commute with each other. This
paragraph lays out our fourth multiplicative motivation for the Kallista symbol.
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