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Abstract
We give an overview of recent work on the Linear Algebra of small-N body problems. Some of
which has given new Flat Geometry Theorems and proofs. For triangles, this yields multiple nicely-
compatible 3-d matrices. But for quadrilaterals, their counterparts turn out to be everything be-
tween 3- and 9-d . Quadrilaterals are additionally minimum for various further kinds of Flat
Geometry matrix to arise.

The current Article contributes a systematic Linear Algebra treatment of cyclic quadrilaterals. By
abstracting matrices from Ptolemy’s Theorems and Brahmagupta’s formula, which then also enter
diagonal-length and circumradius formulae. And studying their properties and interactions.

All Ptolemy matrices are involutions, while all Brahmagupta matrices are not quite. The 3 Ptolemy
sides matrices commute with each other. The 2 Brahmagupta factor matrices commute with each
other, and with one Ptolemy sides matrix. While the original Brahmagupta matrix commutes with
all Ptolemy sides matrices and with the Lagrange projector.

Each of the 3 Ptolemy sides matrices can be given an eigenbasis that is aligned with that of the
underlying Lagrange projector matrix. Or with that of a Brahmagupta factor matrix. But not with
both at once. This is related to the corresponding eigenvalues partitioning each matrix’s eigenspace
in a different way. By which eigenspace alignment does not occur either. Also the vectors entering
our overall Brahmagupta quadratic form are identified to be Ptolemy side matrix eigenvectors.

We provide a supporting account of eigentheory, including some new notions and names. Since the
above interplay leads to commutator algebra posets containing competing lattices of zero commutator
algebras, we also include some supporting Order Theory notions and examples.

The above compatibilities are rather more limited than those between the triangle’s matrices. A
subsequent work shows that the Bretschneider sides-matrix at the core of Bretschneider’s second
convex-quadrilateral area formula has better properties and compatibilities than the Brahmagupta
matrices.
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1 Introduction
1.1 Applying Linear Algebra in detail to Euclidean Geometry
We have set up a program [108, 113, 125, 128, 105, 106, 109, 107, 111, 122, 123, 124, 126, 127, 129, 130,
145, 131, 132, 133, 149, 139, 140, 143, 144, 147, 134, 135, 138, 136, 137, 146, 150, 148, 151] of systematically
applying Linear Algebra in detail to small-N body problems [11, 12, 16, 26, 33, 37, 43, 48, 51, 52, 50,
56, 57, 56, 60, 56, 64, 65, 67, 68, 69, 102, 118]. Some of which has given new Flat Geometry Theorems
and proofs concerning triangles and quadrilaterals [15, 19, 20, 28, 30, 34, 36, 46, 59, 70, 100, 150]. We
however say 3- and 4-body problem when results turn out to be independent of spatial dimension
[125, 128, 105, 129, 131, 132, 133, 3, 140, 145] is preferable.

The below account renders clear that in detail entails a distinct and rather more fruitful venture than the
following. The past few decades’ common practice of using Linear Algebra as a general framework for
Euclidean Geometry [28, 83, 70, 84]. I.e. we are in the business of finding specific matrix (or other Multi-
Linear) formulations for individual foundationally-useful Theorems. And then finding and exploiting
specific Linear-Algebraic properties of these matrices (and other Multi-Linear objects). So as to reach
further Geometrical, Topological, and Shape-Theoretic [37, 42, 48, 51, 62, 67, 103, 105, 107, 111, 150, 153]
conclusions.

So for instance [123] studies what had hitherto been known as the triangle’s Heron(–Euler–Buchholz)
matrix [2, 10, 53]. Revealing it to be the same matrix as in the cycle of cosine rules and the cycle of
triangle inequalities. By which we term it the fundamental triangle matrix,

F :=

-1 1 1
1 -1 1
1 1 -1

 . (1)

A name that is further vindicated by its eigentheory yielding [108, 113, 126], Hopf’s little map
H : S

3 −→ S
2 (2)

[21, 77, 79, 144]. And by F admitting various further Algebraic and Representation-Theoretic interpre-
tations [127].

[125, 105, 126] study the N -body problem’s Lagrange matrix L . And its sharpening to the positions-
to-separations-basis projector, P (for equal point-or-particle masses, the two coincide). With detailed
consideration of the equal-masses 3-body case,

L = P = 1
3

 2 -1 -1
-1 2 -1
-1 -1 2

 . (3)

While [108, 126, 127] also introduce the Apollonius matrix. This encodes the cycle of Apollonius Median-
Length Theorems. And rescales to the sides–medians involutions matrix,

J := 1
3

 -1 2 2
2 -1 2
2 2 -1

 . (4)

For the simplest nontrivial case of the triangle with equal vertex masses, F , J and P furthermore
turn out to commute with each other [108, 126]. This is in part underlied by the linear dependency (LD)

F = J − P . (5)

[127]. The involutivity and F -commutativity properties of J furthermore conspire to give a new proof
of Heron’s formula for medians [108, 113, 134, 126].

Overall, quite a lot of the theory of the triangle with equal vertex masses is controlled by the above 3
matrices. (Or one’s pick of [127] an independent pair of them.) Obtaining Hopf’s little map furthermore
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compounds to giving a new derivation of Kendall’s Little Theorem [42, 48, 67]. I.e. that that the shape
space of triangles is topologically a sphere, as equipped with the standard spherical metric. In fact, Hopf’s
little map arises by double-diagonalizing F . Meaning furthermore expressing its eigenvectors in terms
of the coordinate vectors arising from diagonalizing P = L . Which have been widely called relative
Jacobi vectors, though a truer name [110] for ‘relative Jacobi’ is ‘eigenclustering’ [125, 105]. In contrast,
Smale’s Little Theorem [37] – the earlier topological part of Kendall’s Little Theorem – can be rederived
just from diagonalizing F without evoking eigenclustering vectors.

This means that everything in the previous paragraph can be reproven as following from just Heron’s
formula. So this 2000-year-old formula in fact contains some quite deep secrets that Linear Algebra in
detail reveals. That this body of results arises from so small and long-known an input as Heron’s formula
is interesting enough for the following three robustness tests to have been designed for it [110].

1.2 Three robustness tests for the new matrix theory of the triangle
S.1) What happens if the triangle’s vertices are ascribed non-equal masses? Now the nontrivial eigen-
clustering vector passes from median to arbitrary Cevian [5, 7, 30, 34, 70, 100, 135]. The Apollonius
matrix correspondingly becomes the Stewart matrix [134]. I.e. the matrix encoding the cycle of Stewart
Cevian-Length Theorems [8, 36, 100, 134].1

So far, this analysis has given [134, 137] 2 new 1-parameter families of strongly Heron-like formulae,
meaning that they manifest F itself. Alongside various even larger families that are weakly Heron-
like: manifesting matrices tensorially-related to F [134, 135]. With special roles played by the ‘equi-
Cevian’, ‘altilarity’ and concurrent-Cevian families of triples of triangle co-transversals. In which the
plain, medians [15, 59, 75] and altitudes [46, 82] Heron’s formulae play distinguished-point roles (bounding,
extremal...)

S.2) What happens to flat space’s matrix theory of triangles upon passing to spherical or hyperbolic
triangles? This shall be described shortly in [150].

S.3) Is there a comparable matrix theory of quadrilaterals? It quickly becomes apparent that there is
not [113]. One reason for this is that triangles involve mostly 3-indexed quantities. While all of 2- to
9-indexed quantities crop up for quadrilaterals. By which the corresponding matrices (or higher arrays)

encoding these cease to be multiplicatively compatible with each other.

This is underlied by, for instance, sides and separations no longer coinciding for quadrilaterals; there are
4 and 6 of these respectively. By the shape space of quadrilaterals’ isometry group being a quotient

[76] of SU(3) [98]. Giving an 8-fold [80, 31] of shape quantities [98]. Plus [60] what is identified in
[113] to be a Casimir [39] shape quantity, so for some purposes one has 9 shape quantities. While
separation-pairs enter some results, usefully halving the 6 to a 3 [131].

The previous three paragraphs also hold for tetrahaedrons in place of quadrilaterals. Though many of
the matrices do not coincide for these two cases.

1.3 Pivoting to a systematic study of the Linear Algebra of quadrilaterals
We thus find ourselves in a much more generic situation in considering quadrilaterals (or tetrahaedrons,
or any subsequent N -body problems). As such, we shift focus from our outset position [113] in treating
these. Which was understanding why common quadrilateral area formulae do not give a route to the first
nontrivial case of Hopf’s generalized map [22]

H : S
2 p + 1 −→ CP

p . (6)

Namely,
H : S

5 −→ CP
2 . (7)

1Though we have also argued that [110, 135] a truer name for ‘Cevian’ itself is ‘triangle co-transversal’. So an even truer
name for Stewart’s Theorem is Triangle Co-transversal-Length Theorem!
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Or the generalized Smale and Kendall results that the shape space of N -a-gons is CP
N − 2 . To the

position of trying to systematically understand the much richer Linear Algebra structure of quadrilateral
Theorems in their own right.

So far, we have studied quadrilateral eigenclusters [105] (certainly previously known). The Linear Algebra
of [131] Euler’s Quadrilateral Theorem (better Euler’s 4-Body Theorem) [9, 72, 85, 96]. Revealing it to
be part of a binary-tree valued set of Theorems [131, 132, 133] via the classification of eigenclustering
networks for each N [130]. Starting by giving a new tie between Apollonius Theorem and Euler’s
4-Body Theorem [131], as the 2-path P2 and the P3-bent alias H-eigencluster cases. Alongside a
new P3-straight alias K-eigencluster counterpart [132]. The separations-level Linear Algebra [139] of
Ptolemy’s Theorem and inequality [3, 30, 34, 46, 81, 59, 70, 100, 150]. And the Linear Algebra [113,
147, 143, 150] of Brahmagupta’s [4, 34, 46, 59, 88] and one of Bretschneider’s [13, 14, 18, 24, 46, 59] area
formulae.

We shall gradually uncover reasons why the following is a useful order in which to start a systematic
sweep through quadrilaterals’ Linear Algebra.

0) The Lagrange projector [125, 105].

1) Eigenclusterings arising from the network ambiguities in picking eigenvectors for the previous [105,
129, 130].

2) Euler’s 4-Body Theorem, corresponding to the H-eigenclustering, and its K-eigenclustering counter-
part: ELETs (Eigenclustering-Length Exchange Theorems).

3) Ptolemy’s Theorem, the second form of Ptolemy’s Theorem, and the diagonal-length formulae, all for
cyclic quadrilaterals. And Ptolemy’s 4-body inequality, for arbitrary 4-body configurations. These are
covered in [139] and the current Article, with interplay with 1) in [141] and with 2) in [140].

4) Brahmagupta’s cyclic-quadrilateral area formula, and cyclic-quadrilateral circumradius formulae (in-
cluding Parameshvara’s). These are also covered in the current Article.

5) Bretschneider’s second2 convex-quadrilateral area formulae [143, 150].

6) A generalized Ptolemy Theorem [150].

Many other results remiain – such as less widely publicized area formulae – [18, 114]. Useful Linear
Algebra analysis of some of these shall be covered in [147]. And more eventually, the outcome of applying
similar techniques to the hitherto essentially unstudied quadrilateral Casimir [60, 113, 148]. For this
square root of the sum of the squares of the constituent 2-eigenclustering subsystems’ areas is likely more
theoretically significant than [65, 110, 113] formulae for the overall area of quadrilaterals!

1.4 Inter-relation of some of the program’s works so far
Remark 1 See Fig 1 for some of the current program’s main lines. We omit S.2) since it is not Flat
Geometry, and also restrict to d ≤ 2 and N ≤ 4 . These (and various sidelines also omitted) are
collected into [146]’s larger overview. Fig 2 lists the corresponding Articles, now including also higher-
and arbitrary-N .

Notational Remark 1 Blue backgrounds pick out eigenclustering. Yellow, Kendall’s Shape Theory.
And orange, nontrivial Representation Theory

2Bretschneider’s first such includes angle data, rendering it unamenable to Linear-Algebraic formulation. While
Bretschneider’s second area formula is purely in terms of separations, and Linear-Algebraically identical to [113] Coolidge’s
[24].
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Figure 1:
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Figure 2:
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1.5 Outline of the current Article
Sec 2 serves to preliminarily introduce more traditional Geometry formulations of the cyclic quadrilateral
formulae listed in 3) and 4) above.

In Sec 3 we consider Linear Algebra underpinnings for Ptolemy’s results. Yielding 3 Ptolemy sides
matrices P tL : 4 × 4 , and 1 Ptolemy diagonals matrix P td : 2 × 2 . For all that [139] itself
considered just the Ptolemy separations matrix P t : 6 × 6 . Ptolemy’s Theorem and inequality use
P t , or P t1 and P td . While the second form of Ptolemy’s Theorem uses P t2 and P t3 . All 5

Ptolemy matrices are involutions. And all 3 Ptolemy sides matrices commute with each other and with
the Lagrange projector P [141] (Sec 4).

In Sec 5, we consider the Brahmagupta quadratic form, Ba , at whose core lies the Brahmagupta matrix
Ba . We explain how Ptolemy matrix eigentheory accounts for the a priori strange vector previously

used [113] in formulating Ba . This builds in our program’s second instance of a double-diagonalization.
We also bring in a new factorized formulation

Ba = ba1 ba2 (8)

with constituent Brahmagupta factor matrices ba1 and ba2 . One benefit of this is eigenbasis alignment
between P t3 and ba1, ba2 .

In Sec 6, we find that Ba commutes with all of the P tL and P . And yet ba1 and ba2 only com-
mute with P t1 and with each other. This further motivates the unfactorized version of Brahmagupta’s
formula. We apply some of the above results to give Linear Algebra formulations for circumradius for-
mulae.

In Appendix A, we provide supporting – and yet partly novel – conceptual development of the Linear
Algebra of eigenvalues and eigenvectors. Alongside development of the corresponding arenas: eigenspectra
and eigenspaces. We use this in our detailed tabulation of the current Article’s matrices’ eigentheory in
Appendix B. Finally Appendix C provides supporting material from Order Theory [74, 120] as regards
the posets of competing lattices found in the current Article.
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2 Some traditional Geometry of cyclic quadrilaterals
2.1 Preliminary notation

Figure 3:

Notational Remark 1 Let us denote our quadrilateral’s separations as per Fig 3.a). With the following
extra collective notations. Separations: sS , S = 1 to 6 . Sides: aI , I = 1 to 4 . Diagonals:
dD , D = 1 to 2 .

Notational Remark 2 The following separation sums-and-differences turn out to be useful variables.

s± := a ± b , (9)

t± := c ± d , (10)

d± := e ± f . (11)

Alongside their squares
S± := s±

2 , (12)

T± := t±
2 . (13)

D± := d±
2 . (14)

The semi-perimeter

s := 1
2

4∑
I = 1

aI , .

The product of side-lengths

x :=
4∏

I = 1
aI .

The product of diagonal-lengths

p :=
2∏

D = 1
dD = e f .

The ratio of diagonal-lengths
q := e

f
.
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Structure 2 The following 3-cycle of useful variables correspond instead to pairing the sides in all 3
possible ways. I.e.

l := a c + b d , (15)

m := a d + b c , (16)

n := a b + c d . (17)

For which we introduce the cyclic notation lL , L = 1 to 3 . These quantities turn out to be ‘adapted
variables’: in the sense of recurring in major results about cyclic quadrilaterals. Let us introduce also

y :=
3∏

L = 1
lL = l m n . (18)

And
l± = a c ± b d . (19)

2.2 Ptolemy
Ptolemy’s Theorem (1) [3] For a cyclic quadrilateral,

p = l . (20)

Remark 1 Assuming that the quadrilaterals are nondegenerate, this Theorem’s converse also holds.

Ptolemy’s inequality [3] For an arbitrary quadrilateral (in fact 4-body configuration: dimension in-
dependent)

p ≤ l . (21)

Second form of Ptolemy’s Theorem (2) [19, 20, 87] For a cyclic quadrilateral,

q = m

n
. (22)

Exercise 1 Prove this by a combination of area sums and the triangle circumradius formula.

Remark 2 Both of the above express a piece of diagonal-length information in terms of sides-length
information. So a first motivation for Structure 1’s cycle is their naturality in simplifying the two Ptolemy
Theorems.

2.3 Pair of diagonal lengths
Theorem 3 (Cyclic-Quadrilateral Diagonal-Length Formulae) [19, 20, 87]

e =
√

l m

n
, (23)

f =
√

l n

m
. (24)

Remark 1 We have now isolated each diagonal as an expression in terms of sides data. Thus cyclic
quadrilaterals have no distinction between licit separations data and licit sides data. For the sides data
fully controls the diagonals data, thus leaving no room for licit separations data to be larger than licit
sides data.

Exercise 2 a−) Show that the two forms of Ptolemy’s Theorem together imply the two diagonal-length
formulae and vice versa.

b) Find a proof for the latter, in order to be able to use a) non-circularly, so as to give a further proof of
each of the former.
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2.4 3-cycle of diagonal lengths
Remark 1 The rearrangement of (24) to

f =
√

n l

m

turns out to be nontrivial. For then it and (23) form the first two members of a 3-cycle. Prompting
contemplation of the third member of this cycle,

g :=
√

m n

l
.

Remark 2 Treating the 3 of them together corresponds to ordering a given set of side lengths in the
various possible ways aroung the circle. Let us also introduce the collective notation eL , L = 1 to
3 for g, f, e . And

w :=
3∏

L = 1
eL . (25)

The below then readily follows.

Theorem 3′ (Cyclic-Quadrilateral Extended Diagonal-Length Formulae)

eL =
√

y

lL
2 . (26)

Exercise 3 Prove the inequalities in Fig 4

Figure 4:
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2.5 Area formula
Theorem 4 (Brahmagupta’s Sides-data Cyclic-Quadrilateral Area Formula)

Area =

√√√√ 4∏
I = 1

( s − aI ) . (27)

Remark 1 In this most commonly encountered square-root formulation, Brahmagupta’s formula very
closely resembles Heron’s.

Exercise 4 Deduce this formula from Heron’s and vice versa. Also provide a trigonometric proof of it.

2.6 Cyclic-quadrilateral circumradius formulae
Theorem 5 (Cyclic-Quadrilateral Circumradius Formula)

rc =
√

y

T
= 1

4

√
y∏4

I = 1 ( s − aI )
. (28)

Where rc is the circumradius (Fig 3.b) T is the useful tetra-area variable,
T := 4 Area .

Remark 1 The second expression here is a condensed presentation of Parameshvara’s formula [6]. As
obtained from the first form by substituting in Brahmagupta’s area formula.

Exercise 5 Prove Parameshvara’s formula.

Remark 2 Furthermore, using Rc := rc
2 ,

Rc T 2 = y . (29)

This is a relation of physical dimension [L]6 . Where we use the convention that capital letters are the
squares of the corresponding lower-case length variables.

Remark 3 Also
rc T = w . (30)

Which has the advantage of being just third-order, and partly in terms of more primary variables: e
and f .
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3 Linear Algebra of Ptolemy Theorems and Diagonal-Length
Formulae

3.1 Ptolemy quadratic forms and matrices
Structure 1 The Ptolemy diagonal quadratic form is

Ptd = 1
2 d · P td · d . (31)

For diagonal lengths 2-vector for the quadrilateral,

d :=
(

a
c

)
.

And Ptolemy diagonal matrix
P td = τ . (32)

Where in turn
τ :=

(
0 1
1 0

)
: (33)

the sole transposition matrix supported in 2-d .

Structure 2 The Ptolemy sides quadratic forms [141]

PtL = 1
2 r · P tL · r . (34)

For quadrilateral side lengths 4-vector

r :=


a
b
c
d

 =:
(

r1
r2

)
(35)

in standard basis. Or

r :=


a
c
b
d

 =:
(

o1
o2

)
(36)

in opposite-side pairs basis. Where the second expressions in each case are 2-vector blocks.

And Ptolemy matrices

P t1 :=
(

0 | I
I | 0

)
, P t2 :=

(
0 | τ
τ | 0

)
, P t3 :=

(
τ | 0
0 | τ

)
(37)

in standard basis.

Or
P t1 :=

(
τ | 0
0 | τ

)
, P t2 :=

(
0 | τ
τ | 0

)
, P t3 :=

(
0 | I
I | 0

)
(38)

in the opposite-sides basis. Where in turn I is the 2-d identity matrix.

Remark 1 Observe that P t2 is invariant under this change of basis. While the standard basis is
P t3-adapted, the opposite-sides basis is P t1-adapted.
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Remark 2 The above 3 quadratic forms provide a truer notation for l, m, n respectively. We can
summarize this by

P tL = lL .

Structure 3 The Ptolemy separations quadratic form [139] is

Pt := 1
2 s · P t · s . (39)

For separation lengths 6-vector for the quadrilateral
a
b
c
d
e
f

 =

 r1
r2
d

 =
(

r
d

)

in the standard basis.
Or 

a
c
b
d
e
f

 =

 o1
o2
d

 =
(

o
d

)

in the opposite-side pairs and then diagonal-pair basis.

And Ptolemy separations matrix

P t :=

 0 | I | 0
I | 0 | 0
0 | 0 |-τ

 (40)

in the standard basis. Or

P t :=

 τ | 0 | 0
0 | τ | 0
0 | 0 |-τ

 (41)

in the opposite-side pairs and then diagonal-pair basis. In either case, additionally,

P t :=
(

P t1 | 0
0 | τ

)
. (42)

3.2 Their eigentheory
Remark 1 An eigenvalue-level analysis is tabulated in rows 2 to 4 of Fig 7. With eigenvector-level
analysis in Fig 9 for P td . In row 2 of Fig 8 for the P tL . In particular, eigenbasis can here be shared
with P ’s H-eigenclustering choice [141]. And in Fig 10 for P t [139].
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3.3 Applications
Remark 1 In terms of separations, Ptolemy’s Theorem reads

Pt = 0 . (43)

And Ptolemy’s inequality reads
Pt ≥ 0 . (44)

Remark 2 While in sides–diagonals split form, Ptolemy’s Theorem reads

Pt1 = Ptd . (45)

And Ptolemy’s inequality reads
Pt1 ≥ Ptd . (46)

Remark 3 The second form of Ptolemy’s Theorem now also reads

y = Pt2

Pt3
. (47)

This can be rearranged into the form

r · ( e P t3 + f P t2 ) · r = 0 . (48)

For which a common-factor matrix can be abstracted:

Se :=


0 0 e f
0 0 f e
e f 0 0
f e 0 0

 . (49)

And yet for cyclic quadrilaterals e and f can be viewed as dependent variables, so this is of limited
use.

This dependency also gives a reason for using sides rather than separations in formulating Ptolemy
matrices.

Remark 4 The diagonal formulae can also now be recast as follows.

e2
M PtM

2 = Π .

For

Π :=
3∏

L = 1
PtL .

3.4 All of our Ptolemy matrices are involutions
Lemma 1 P t , the P tL and P td are all involutions.

Exercise 6− Prove this.
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4 Commutativity properties of Lagrange and Ptolemy-sides ma-
trices

Lemma 2 [141] i)
[ P tL , P tL′ ] = 0 . (50)

ii)
[ P , P tL ] = 0 . (51)

Remark 1 This is now with reference to the N = 4 Lagrange projector,

P = 1
4


3 -1 -1 -1

-1 3 -1 -1
-1 -1 3 -1
-1 -1 -1 3

 . (52)

Remark 2 ii) is not an independent statement for the following reason [141]. The identity matrix trivially
commutes with all other matrices of the same size. And the P tL , P and I are linearly dependent
(LD). According to

P = I − ⟨P t⟩ . (53)

In words,

( 4-body Lagrange matrix ) = ( identity ) − ( the 4-average Ptolemy matrix ) .

Where the identity matrix has been ‘adjoined as a 4th Ptolemy matrix’.
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5 Linear Algebra of Brahmagupta’s cyclic-quadrilateral area for-
mula

5.1 The overall Brahmagupta matrix revisited
Structure 1 As in treating Heron’s formula, we approach Brahmagupta’s from a Linear- Algebraic point
of view by expanding out its square. From the definition of semi-perimeter and tetra-area,

T 2 = ( a + b + c − d ) ( a + b − c + d ) ( a − b + c + d ) ( -a + b + c + d )

=
[

( a + b )2 − ( c − d )2 ] [
( c + d )2 − ( a − b )2 ]

=
(

s+
2 − t−

2 ) (
t+

2 − s−
2 )

= ( S+ − T− ) ( T+ − S− ) . (54)

Where the second step makes 2 uses of differences of 2 squares. And the last step brings in (9, 10)’s
adapted variables.

Thus
T 2 = Ba = 1

2 Y · Ba · Y .

For

Y :=


S+
S−
T+
T−

 =
(

S
T

)
. (55)

And Brahmagupta matrix

Ba :=
(

-τ | I

I |-τ

)
. (56)

Remark 1 This was essentially already presented in [113]. Which however used a different basis and
different notation for what we are now calling adapted variables. We now account for Y as being built
out of the standard eigenbasis of Ptolemy vectors. Thus further justifying its use, as well as ordering our
study so that Brahmagupta postcedes Ptolemy.

In this way, we have found some compatibility between sides matrices for quadrilaterals.

Notational Remark 1 We use Ba since one of us will shortly be presenting [143] the counterpart for
Bretschneider’s second formula, with quadratic form denoted by Be .

5.2 Its eigentheory
Remark 1 See the bottom row of Fig 7 for an eigenvalue-level analysis. In particular, it is twofold
degenerate. And the bottom row of Fig 8 for an eigenvector-level analysis.

5.3 Two new Brahmagupta matrices: factors of the previous
Structure 1 Next introduce

ba1 =
(

s+
2 − t−

2 )
= S+ − T− , (57)

ba2 =
(

t+
2 − s−

2 )
= T+ − S− . (58)

Such that
Ba = ba1 ba2 . (59)

Index these by g = 1, 2 . As quadratic forms,

bag := 1
2 r · bag · r . (60)
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For Brahmagupta factor matrices

ba1 :=
(
1 | 0

0 | τ − I

)
, ba2 :=

(
τ − I| 0
0 | I

)
. (61)

These are presented in standard basis

5.4 Their eigentheory
Remark 1 See the bottom row of Fig 7 for an eigenvalue-level analysis. In particular, spotting the two
factors fails to lift the twofold degeneracy. And the third row of Fig 8 for an eigenvector-level analysis.
Observe here that the eigenbasis is aligned with the second one given for P t3 . This, on top of the
natural action on r gives two advantages of the bag over Ba . As regards setting up a coherent
matrix theory for cyclic quadrilaterals.

Remark 1 We use ‘the Ba ’ to refer to all three of the above matrices together.

5.5 The Ba are not quite involutions
Lemma 3

Ba3 = Ba , but Ba2 ̸= I . (62)

bag
3 = bag , but bag

2 ̸= I . (63)

Exercise 7 Prove these statements. Also relate these results to differences between these matrices’
minimal and characteristic polynomials. In the process, derive row 4 of Fig 7.

5.6 Application to cyclic quadrilaterals’ circumradius formula
Theorem 5′ i)

rc =
√

Π
T

=
√

Π
Ba

. (64)

ii)
Pt1 Pt2 Pt3 = Π = Rc T 2 = Rc Ba = Rc ba1 ba2 . (65)

Remark 1 For intended further use in Shape Theory [48, 62, 67, 103], we also normalize the circumradius
to 1 , thus obtaining an algebraic relation between the sides, as follows.

Theorem 5′′ (Adapted-variables Shape-Theoretic Parameshvara constraint

Pt1 Pt2 Pt3 = Π = T 2 = Ba = ba1 ba2 . (66)

Remark 2 It is also plausible to use area and the PtL as 4 variables, which are simply related by
the 1 unit-circumradius condition. Or area and the extended 3-cycle version of the diagonals as the 4
variables, also simply related by the same condition.
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6 Brahmagupta and mutual commutator algebras
6.1 (Non)zero Commutators
Lemma 4 i)

[ P tL , Ba ] = 0 . (67)

ii)
[ P , Ba ] = 0 . (68)

Lemma 5 (Brahmagupta-factors’ self commutation)

[ bag , bag′ ] = 0 . (69)

A fortiori,
ba1 ba2 = 0 = ba2 ba1 . (70)

Lemma 6 (Brahmagupta-factors–Ptolemy partial mutual commutation) i)

[ P t1 , bag ] = 0 . (71)

ii) But
[ P t2 , bag ] ̸= 0 , (72)

[ P t3 , bag ] ̸= 0 . (73)

iii) Also
[ P , bag ] ̸= 0 . (74)

Remark 1 i) is not however an independent equation, by the LD

P t3 = ⟨ba⟩ . (75)

In words,

( third Ptolemy matrix ) = ( 2-average of Brahmagupta factor matrices )

Exercise 8− Verify Lemmas 4 to 6, computing all the nonzero right-hand-side terms. What are the
individual products P t2 · bag , bag · P t2 , P t3 · bag , bag · P t3 ?

Project 1 Does an interesting multiplicative algebra ensue? An interesting brackets algebra?
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6.2 Zero-commutativity forms competing posets
Remark 1 See Fig 5 for which independent zero commutativity algebras can be formed. Alongside the
consequences following from those pairs of matrices which do not commute. The underlying notions are
provided in Appendix B.

Figure 5:

Project 2 We leave working out which new matrices are discovered as nonzero commutators for another
occasion. Alongside which commutator algebras are realized in the process.
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7 Conclusion
7.1 Scholium
Remark 1 On the one hand, for the triangle, 3 particularly significant 3 × 3 matrices arise [123, 126,
127]. Namely, the Apollonius involution J , the Lagrange projector P and the fundamental triangle
matrix F . Which is the difference of the other two as well as the core of Heron’s area formula and the
cycles of cosine rules and of triangle inequalities. These all commute with each other, can be assigned
a common eigenbasis and have aligned eigenspaces. On the other hand, we have now worked out the
following.

Remark 2 For quadrilaterals, many more matrices arise, with 2- through to 9-indices in play: so life
is more complicated [110, 113]. Any flat-space N -body problem admits a projector P encoding the
Physics of being able to decouple relative motion from centre of mass motion. For equal masses, this
projector coincides with [125] the Lagrange matrix; ours here is 4 × 4 . For N = 4 , Apollonius’
Medians-Length Theorem most naturally becomes two Eigenclustering Length-Exchange Theorems [130].
One is Euler’s [9, 72, 85, 96, 131] while the other is new [132]. But the matrices encoding these carry 3-
and 6-indices – not compatible with 4-indices – and are not involutions either.

Remark 3 It however turns out that a subtlety first realized for N = 4 – sides–diagonals distinction
– begets Ptolemy’s inequality which provides a separate source of involutions. Be this at the level of
separations: 6 × 6 [139]. Or of the sides–diagonals split – 4 × 4 and 2 × 2 . The 4 × 4 case
consists of a 3 cycle [141] P tL = JL , all of which feature within Ptolemy’s two Theorems. These
are relevant in the current Article’s particular simplified setting of cyclic quadrilaterals.

Remark 4 Therein, Brahmagupta’s area formula is a natural generalization of Heron’s area formula, at
least prima facie with both in square-root form. So we abstract a Brahmagupta matrix Ba [113]. But
this turns out to be doubly-degenerate, unlike the nondegenerate F . Nor does our new working building
on the Brahmagupta quadratic form’s factorization manage to ameliorate this double degeneracy. Nor
is it immediately clear what function this double degeneracy plays. Brahmagupta matrices do not quite
manage to be involutions either, in the sense that they obey

M3 = M without cancellation to M2 = I . (76)

In this way, they are less Algebraically simple than most of the other matrices in the current account.

Remark 5 The P tL = JL turn out to commute with each other and with P [141]. The last of which
turns out to be unsurprising [141] since the following are LD. The P t , P and the trivially commuting
I . All of the P t , nor P commute with Ba . While only P t3 commutes with our 2 Brahmagupta

factor matrices bag , which additionally commute with each other, for all that the 3 of them are LD.
This gives a further reason to work with the Ba rather than the bag . [150]’s Exercises shall outline
an underlying Algebraic explanation, generalizing [142]’s for triangle matrices.

Remark 6 We have now identified the vectors entering the overall Brahmagupta quadratic form to be
Ptolemy side matrix eigenvectors. This gives a particular way in which it is beneficial to study Ptolemy
before Brahmagupta.

Remark 7 Each of the P tL can be given an eigenbasis that is aligned with an H-eigenclustering basis of
P . Or with that of a bag . But not with both at once. This is related to the corresponding eigenvalues

partitioning each matrix’s eigenspace in a different way. Respectively, 3 | 1 , 2 | 2 and 2 | 1 | 1 . By
which eigenspace alignment is not manifested either in our cyclic quadrilateral study.

Remark 8 The Ptolemy separations matrix P t plays a similar role to F as follows. Firstly, each
encodes an inequality: a disguised version of the triangle inequality versus Ptolemy’s inequality. Secondly,
both of these encodements can be rooted in indefiniteness. For Heron’s formula, sides data violating the
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triangle inequality is timelike, corresponding to negative area [123]. While separations data violating
Ptolemy’s inequality is also ‘timelike’.

With the following caveat. F is hyperbolic while P t is ultrahyperbolic. In the Heron case, the
corresponding null statement – that degenerate triangles have zero area – separates a spacelike cone
interior from a timelike exterior. In the Ptolemy case, the corresponding null statement is that cyclic
quadrilaterals obey Ptolemy’s Theorem. But the topological inter-relations between null, spacelike and
‘timelike’ regimes are more nuanced.3

More precisely, these are + + − and + + + − − − respectively. So the realized ultrahyperbolicity
is furthermore balanced (Appendix A.9): invariant under exchange of signs. Thus an ultrahyperbolic
counterpart of how + − wave equations and spacetimes are simpler than [29] any higher-d wave
equations or spacetimes is in play here.

7.2 Outlook
Pointer 1 A subsequent work [143] shows that the Bretschneider sides-matrix at the core of Bretschnei-
der’s second convex-quadrilateral area formula has better properties and compatibilities than the Brah-
magupta matrices. So convex turns out to be more satisfactory than cyclic, with both falling short of
the triangle case’s results. An overall moral is as follows [110].

In generalizing away from an application of Hopf’s little map, we should not expect all features to be
persistent. Especially if Hopf’s generalized maps only partly embody the generalized case’s features.

Pointer 2 Another sequel of the current Article is our comparative study of notions of departure from
cyclicness for quadrilaterals [150].

Pointer 3 Some of the current Article’s sets of matrices turn out to be useful (Appendix B.3) in critically
re-examining the QM literature’s account of CSCO (complete sets of commuting observables).

3As part of this, the quotation marks are themselves nuanced.
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A (Multi-)Linear Algebra entering our tabulation
A.1 Eigentheory’s basic objects
Remark 1 Throughout, let M be a R-valued square p × p matrix for some finite p ∈ N . For use
in studying quadrilaterals, indices taking p = 2 to 9 values are relevant. The current Article’s are
p ≤ 6 . We thus concentrate specific examples on such small p . All of the current Article’s matrices

are furthermore symmetric.

Definition 1 An eigenvalue of M is any number λ solving

det( M − λ I ) = 0 . (77)

Naming Remark 1 Eigenvalues are alias proper values and characteristic values. (77) is most usually
called the characteristic equation. Though, to match, it can also be called eigenvalue equation. And is
also alias secular equation. Since p is finite, this equation is of polynomial form. Hence the further
aliases characteristic polynomial, eigenvalue polynomial and secular polynomial.

Definition 2 An eigenvector is any vector solution v of the eigenvector equation

M · v = λ v . (78)

For whichever particular eigenvalue λ .

Remark 1 In general, since R is not Algebraically closed, its Algebraic closure C is needed to accom-
modate eigenvalues.

Lemma A For real symmetric matrices, however,

i) all eigenvalues are real.

ii) The eigenvectors can be taken to form an orthonormal set.

A.2 Eigentheory’s corresponding arenas
Definition 1 The eigenspectrum of M is the set of distinct values realized as eigenvalues of M . I.e.

Espec(M) = { λe , e = 1 to E } ∈ R
E . (79)

Definition 2 Let
Eige(M)

denote the eigenspace spanned by the eigenvectors corresponding to eigenvalue λe . And

Eig(M)

denote the total eigenspace of M .

Lemma B (Eigenspace Decomposition)

Eig(M) =
⊕

e ∈ Espec
Eige(M) =

E⊕
e = 1

Eige(M) . (80)
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A.3 Eigenvalue multiplicities
Remark 1 Eigenvalues are often stated with multiplicity. There are however 3 distinct widely useful
notions of multiplicity, so we need to specify which we mean.

Definition 1 The algebraic multiplicity αe of λe is the number of times that this occurs as a root of
the characteristic polynomial. I.e. the powers featuring in

C( M ; x ) =
E∏

e = 1
( x − λe )αe . (81)

Definition 2 The geometrical multiplicity γe of λe is the dimension of its corresponding eigenspace,

γe := dim (Eige(M) ) . (82)

Definition 0 The minimal polynomial
M( M ; x )

is defined as follows.

i) It is monic: it has been scaled so that its lead coefficient is standardized to 1 .

ii) It is equal to zero:
M( M ; x ) = 0 . (83)

iii) Suppose that some other polynomial N( M ; x ) = 0 . Then M | N (i.e. M divides N ). This
is the minimality property itself.

Definition 4 Suppose that we express the minimal polynomial as

M( M ; x ) =
E∏

e = 1
( x − λe )µe , (84)

Then the powers µe are each λe ’s corresponding minimal multiplicity.

A.4 The eigenvalue multiplicity inequality, and ensuing adjectives
Lemma C A square p × p matrix eigenvalue multiplicities obey the poset of inequalities in Fig 6.

Figure 6:

Exercise 9 Prove this.
♠ ⋄ ♣
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Remark 1 Suppose that some
αe = p . (85)

Then there is no room left for M to have any further eigenvalues. So we have a single-eigenvalue matrix.
I.e. Espec(M) is topologically a point.

Remark 2 If not, so that
αe < p , (86)

then we have a multi-eigenvalue matrix.

Remark 3 The opposite extreme to Remark 1 is as follows.

Definition 1 λe is simple if
αe = 1 . (87)

M is simple if all of its eigenvalues are.

Remark 4 Sandwiching then also fixes that

αe = γe = µe = 1 . (88)

Remark 5 Suppose that all of M ’s eigenvalues are simple. Then it has all eigenvalues distinct.

Definition 2
αe > 1 (89)

defines by exclusion nonsimple eigenvalues.
♠ ⋄ ♣

Definition 3 λe is semisimple [99] if
αe = γe . (90)

M is diagonalizable iff all of its eigenvalues are semisimple. Suppose not, so that

αe > γe (91)

for ≥ 1 λe . Then M is non-diagonalizable alias defective [99].

Definition 4 An eigenvalue has trivial eigenspace if

γe = 1 . (92)

And nontrivial eigenspace if
γe > 1 . (93)

♠ ⋄ ♣

24



Definition 5 λe is minimally-nontrivial iff

γe > µe . (94)

And minimally-trivial iff
γe = µe . (95)

M is minimally-trivial iff all of its eigenvalues are. And minimally-nontrivial iff ≥ 1 of its
eigenvalues is.

Definition 6 λe is minimally-minimal iff

µe = 1 . (96)

And minimally-nonminimal iff
µe > 1 . (97)

M is minimally-minimal iff all of its eigenvalues are. M is minimally-nonminimal iff ≥ 1 of its
eigenvalues is.

Remark 7 The minimal polynomial M is a minimal algebraic object with opposing maximal algebraic
object the characteristic polynomial C . Geometrical multiplicity is however geometrical rather than
meaningfully associated with some algebraic polynomial. As such, algebraic minimality need not neces-
sarily bound geometrical multiplicity, nor vice versa. Examples suffice to establish that all three of the
following cases are realized.

Definition 7 M is mindominant if
γe < µe . (98)

Geominimal if
γe = µe . (99)

And geomdominant if
γe > µe . (100)

Definition 8 We say that λe is of unified multiplicity iff

αe = γe = µe . (101)

And that M is Order-Theoretically trivial [152] iff all of its eigenvalues are of unified multiplicity.
Definitions 4 to 7 are our own.

Remark 8 Unified multiplicity 1 is a longer phrasing for simple. Unified multiplicity p is a shorter
one for single-eigenvalued Order-Theoretically trivial.

bPn
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A.5 (Non-)degeneracy
Remark 1 Let us now also bring in quadratic-form, PDE classification and Special Relativity notions of
degeneracy and indefiniteness

Definition 1 A quadratic form

Q(x) := ||x||M 2 = x · M · x . (102)

viewed as a bi-linear form is degenerate [41, 44] if > 1 of the following hold.

i)
∃ some u ̸= 0 ∈ Vp such that u · M · v = 0 ∀ v ∈ Vp . (103)

ii)
∃ some v ̸= 0 ∈ Vp such that u · M · v = 0 ∀ u ∈ Vp . (104)

If not, then M is said to be nondegenerate. Where Vp are, for symmetric matrices, R-valued p-
dimensional vector spaces.

Lemma D a) M nondegenerate iff M nonsingular.

b) M degenerate iff M singular

Lemma E Degenerate matrices possess ≥ 1 zero eigenvalue.

Exercise 2 Prove Lemmas D and E.

Structure 1 A matrix M is nondegenerate if

N0(M) = 0 . (105)

It is degenerate if
N0(M) ≥ 1 . (106)

Structure 2 The count N0(M) of zero eigenvalues, including algebraic multiplicity, constitutes a
spectral quantifier of the extent of degeneracy. While the count N ̸= 0(M) of nonzero eigenvalues,
including algebraic multiplicity, constitutes a spectral quantifier of the extent of the nondegenerate sector.

A.6 Rank and nullity
Definition 1 The rank of a matrix M is the dimension of its image,

r(M) = dim (ImM ) . (107)

Definition 2 The nullity of M is the dimension of its kernel,

n(M) = dim (KerM ) . (108)

Rank–Nullity Theorem [27, 83, 101]

r(M) + n(M) = dim(M) = p . (109)

Remark 2 Each of r(M), n(M) can take whichever integer value from 0 to p .

r(M) = p (110)

for a matrix of full rank. Here
n(M) = 0 . (111)
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While
r(M) = 0 (112)

for a null matrix: the zero matrix. Here
n(M) = p . (113)

All other cases are of partial rank and partial nullity. By the Rank–Nullity Theorem, these form 2
topologically equal and yet oppositely-labelled chains. I.e.

{ 1, 2, ..., p − 1, p } and { p, p − 1, ..., 2, 1 } .

Remark 1 n(M) and N0(M) are numerically coincident notions. As are r(M) and N ̸= 0(M) .
This dichotomy amounts to plain versus specifically spectral realizations of the same Linear Algebra
notions.

Structure 1 At the level of arenas, each matrix acting on a vector space’s vectors splits it up as follows.

Vp(M) = Im(M) ⊕ Ker(M) . (114)

The Rank–Nullity Theorem is then the corresponding dimensional count’s 2-piece partition.

A.7 Notions of signature
Structure 1 Let M be a symmetric matrix. Then by Lemma A.i), all of its eigenvalues are real.
Thus, in addition to the above zero versus nonzero distinction, a meaningful split by eigenvalue sign is
furthermore supported. Let us denote these positive and negative eigenvalue counts, including algebraic
multiplicity, by N±(M) respectively. So

N ̸= 0(M) = N+(M) + N−(M) . (115)

The current Subsection is a spectral version of [123]’s notions and names.

Definition 1 The Mathematicians’ signature is

sMath(M) = max ( N+(M), N−(M) ) . (116)

Definition 2 The Physicists’ signature in detail can be taken to be an ordered list of the signs of the
eigenvalues. I.e.

sPhys-detail(M) = + ... + − ... − 0 ... 0 . (117)

Somewhat more efficient notation for this is as a triple

sPhys-detail(M) = ( N+(M) , N−(M) , N0(M) ) . (118)

Definition 3 The Physicists’ signature in summary is

sPhys(M) = N+(M) − N−(M) = ∆N(M) . (119)

Or possibly the opposite sign of this by change of sign convention (see the next item below).

A.8 Notions of (in)definiteness
Definition 0 A quadratic form Q(x) with matrix M at its core is definite if

N+(M) = p and N−(M) = 0 or vice versa . (120)

Q(x) is positive-definite in the first case, and negative-definite in the second. Differences between these are
a matter of convention. I.e. positive-definite Q(x) = k is equivalent to negative-definite -Q(x) = -k
.
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It is indefinite if both of the following hold.

N±(M) ≥ 1 . (121)

Definition 1 A quadratic form Q(x) is elliptic iff the following hold.

1) Nondegeneracy alias full rank.

2) Definiteness.

Definition 2 It is hyperbolic if 1) and the following hold.

3) Indefiniteness

4) Precisely 1 eigenvalue has the opposite sign to all the others. I.e. ≥ 1 of the following holds.

N+ = 1 or N− = 1 (122)

This can be viewed as minimal realization of indefiniteness.

Definition 3 It is ultrahyperbolic [29] if 1), 3) and the following hold.

5)
N±(M) ≥ 2 . (123)

I.e. non-minimal realization of indefiniteness.

A.9 Discussion with further structures and adjectives
Remark 1 The above are but a spectral reformulation of ‘garden variety’ notions of ellipticity and
hyperbolicity; there are far more subtle notions of each in PDE Theory [47, 90, 89].

p = 2 is minimum for hyperbolicity to be realized.

p = 4 is minimum for ultrahyperbolicity to be realized.

Structure 1 In the hyperbolic case, indefiniteness partitions up the arena of values of our quadratic
form into 3 qualitatively-distinct cases.

Q > 0 is ‘spacelike’.

Q < 0 is ‘timelike’.

Q = 0 is ‘lightlike’ alias null.

This Special Relativity type nomenclature [71] is here aligned with the following convention. That there
is 1 minus sign and p − 1 plus signs.

The null values form a cone.

Separating a spacelike interior region.

From a generally topologically distinct timelike exterior region.
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Remark 2 For p = 2 , the cone is a pair of intersecting lines. And exceptionally, the interior and
exterior regions are topologically the same: wedges. By which there is a space-time exchange symmetry.
This case is technically easier in a number of ways [29].

Remark 3 p = 3 is minimum for no such exchange to hold. By which ‘space’ and ‘time’ are realized
distinctly.

Now at the level of PDEs, prescribing data on a spacelike surface works (Cauchy problem from a Cauchy
surface).

While prescribing data on a timelike surface does not (the sideways Cauchy problem is ill-posed [66]).

For even p ≥ 4 , the maximally ultrahyperbolic case has

N±(M) = p

2 . (124)

We term the p ≥ 0 version of this notion balanced. This extends the domain in which ‘space’-‘time’
exchange symmetry applies, where the quotation marks around time are especially nuanced.

For odd p ≥ 5 , the maximally ultrahyperbolic case has the following.

N+(M) = p + 1
2 and N−(M) = p − 1

2 or vice versa . (125)

We term the p ≥ 1 cases of this almost-balanced.

Remark 4 We term any non-minimal-or-maximal ultrahyperbolic matrix partially ultrahyperbolic. I.e.
within the convention that N+(M) ≥ N−(M) ,

N+(M) − 2 ≥ N−(M) ≥ 2 . (126)

p = 5 is minimum for an almost-balanced hyperbolic matrix.

p = 6 for a nontrivially partially ultrahyperbolic matrix.

Remark 6 Q > 0 , Q < 0 and Q = 0 remain distinguished for ultrahyperbolic matrices. The
topology of the corresponding null arena is not however a cone. Nor as straightforward to handle as the
cone [29], including as regards separating the other two arenas. Much nice and simple theory is confined
to at-most hyperbolic indefiniteness.

A.10 Non-degenerate sectors
Structure 1 Given M , place it into Jordan normal form with all the nonzero-eigenvalue blocks first
and the zero-eigenvalue ones last. Then these nonzero eigenvalue blocks form the matrix’s non-degenerate
sector. For some purposes – if not others – the zero-eigenvector blocks can be struck off. Leaving us with
a non-degenerate matrix for the non-degenerate sector. This can then be analyzed as per the previous
two Subsecs.

p = 2 is minimum to have an nontrivial elliptic degenerate sector.

p = 3 for a hyperbolic one.

p = 4 for a hyperbolic one free from space-time exchange symmetry.

p = 5 for an ultrahyperbolic one.

p = 6 for an almost-balanced one.
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p = 7 for a nontrivially partially ultrahyperbolic one.

Exercise 3 (Long) Find a minimum-dimensional square matrix exemplifying every qualifier in this
Appendix. And every minimum property.

B More on eigenarenas
B.1 Split eigenarenas
Definition 1 The nonzero eigenspectrum

Espec∗(M) ⊆ Espec(M) , (127)

by excision of 0 if present.

Structure 1 The degenerate-sector eigenspace is

Eig0(M) = Ker(M) . (128)

While the nondegenerate-sector eigenspace is

Eig∗(M) = Im(M) . (129)

This is additionally

Eig∗(M) =
⊕

e = Espec∗

Eige(M) =
E∗⊕

e = 1
Eige(M) . (130)

Thus the whole eigenspace admits the decomposition

Eig(M) = Eig∗(M) ⊕ Eig0(M) . (131)

Which is just a spectral reformulation of (114).

Definition 2 For a symmetric matrix M , the positive and negative eigenspectra are as follows.

Espec±(M) ⊆ Espec∗(M) (132)

now by excision of the negative and positive eigenvalues respectively.

Structure 2 The positive and negative eigenspaces are as follows.

Eig±(M) =
⊕

e± ∈ Espec±(M)

Eige±
(M) =

E±⊕
e± = 1

Eige±
(M) . (133)

Structure 3 The nondegenerate-sector eigenspace furthermore fine-splits into

Eig∗(M) = Eig+(M) ⊕ Eig−(M) . (134)

Remark 1 Thus
Eig(M) = Eig+(M) ⨿ Eig−(M) ⨿ Eig0(M) (135)

is the full split of the eigenspectrum by sign.

While the eigenspace split by sign is the first of the following.

Vp = Eig(M) = Eige+(M) ⊕ Eige−
(M) ⊕ Eig0(M)
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=
⊕

e+ ∈ Espec+(M)

Eige+(M) ⊕
⊕

e− ∈ Espec−(M)

Eige−
(M) ⊕ Eig0(M)

=
E+⊕

e+ = 1
Eige+(M) ⊕

E−⊕
e− = 1

Eige−
(M) ⊕ Eig0(M) . (136)

Finally, the second of these is the signed-grouping version of the finest graining of the vector space by
eigenspaces.

bPn
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B.2 Eigenvectors and eigenspaces for a single matrix
Remark 1 A matrix’s overall eigenbasis carries a partition by the eigenvalues to which each eigenvector
belongs.

Remark 2 Eigenspaces have a ( γe − 1 )-parameter freedom in choosing eigenvectors up to sign. Which
is nontrivially realized whenever the eigenspace is nontrivial. And 2γe sign-choice freedoms.

Remark 3 An individual eigenvalue’s eigenspace is a direct sum of Jordan blocks,

Eige(M) =
Je⊕

j = 1
(M) . (137)

The trivial Jordan block is just the eigenvalue. The minimally nontrivial Jordan block is(
λ 1
0 λ

)
. (138)

Larger nontrivial Jordan blocks are sparse. With the eigenvalue in the principal diagonal and 1’s in its
first upper parallel comprising the sole nonzero values.

Naming Remark 1 The previously mentioned non-diagonalizable alias defective is also alias Jordan
nontrivial.

Remark 4 Jordan block matrices possess < p LI eigenvectors [99]. I.e. there is less than a basis
amount of them. By which eigenvectors fail to span the eigenspace.

Remark 2 Symmetric ⇒ diagonalizable leaves no room for nontrivial Jordan blocks. So we have no
more to say in the current Article about Jordan-nontrivial blocks; or effects dependent on these.

B.3 Eigenvectors and eigenspaces for sets of commuting matrices
Remark 1 We observe the following, even for symmetric matrices.

They can share eigenbasis, whether or not they share eigenspaces.

They can fail to share eigenbasis, whether or not they share eigenspaces.

On some occasions, the previous subsection’s freedom has the flexibility to align eigenbases. While on
others, it does not. Including by eigenvectors that would need to be linearly combined being partitioned
off in distinct eigenspaces for ≥ 1 of our matrices.

Remark 2 Let us also mention unique specification. In the sense that picking enough matrices that their
collection of eigenvalues uniquely specifies each eigenvector in a shared eigenbasis.

Remark 3 We leave these as informal observations for now. For one of us is currently considering the
following. Whether the (often mathematically non-rigourous) literature on interplay between commu-
tation, shared eigenbases and unique specification actually covers all possibilites afforded by ‘eigenvalue
degeneracy’. In the light that ‘eigenvalue degeneracy’ = ‘eigenspace nontriviality’ is a Combinatorial
matter. And that (at least many accounts in the literature and in courses) have not made systematic use
of Cominatorially-adroit Linear Algebra. The literature in question uses ‘CSCO’ as its keyword (com-
plete sets of commuting observables). And is part of the QM literature, where there is interest in using
eigenvalues to label eigenstates.

End Remark 1 Commuting sets of matrices from the current Article are among those entering the
ensuing critical reappraisal of this topic.
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C Tabulation of eigentheory for P , the P t and the Ba

C.1 Eigenvalue-level analysis
This is provided in Fig 7.

Figure 7:
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C.2 Eigenvectors and eigenspaces

Figure 8:
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Remark 1 This is provided in Fig 8 for 4 × 4 . Fig 9 for 2 × 2 . And Fig 10 for 6 × 6 .

Remark 2 All 3 middling partitions [120] of 4 objects are represented.

3 | 1 by P .

2 | 2 by the P t .

And 2 | 1 | 1 by the Ba .

Remark 3 Among these, the green and orange eigenbasis choice for P t3 ’s 2 | 2 shares eigenbasis and
yet clearly not eigenspaces with the following. The blue and yellow ‘ H ’ eigenclustering eigenbasis choice
for P ’s 3 | 1 .

While the teal and pink eigenbasis choice for P t3 ’s 2 | 2 shares instead eigenbasis and yet not eigenspaces
with the following. The beige, brown and red eigenbasis choice for ba1 ’s 2 | 1 | 1 .

Remark 4 Geometrical interpretations are tabulated up to proportion.

Figure 9:
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Figure 10:

♠ ⋄ ♣

Remark 4 Finally, Fig 11 decomposes separations-Ptolemy’s eigenvectors into padded versions of sides-
Prolemy and diagonals-Ptolemy.

Figure 11:
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D Supporting Order Theory
D.1 Posets and lattices
Definition 1 A relation ⪯ is a partial ordering if it is reflexive, antisymmetric and transitive. A set
equipped with a partial ordering is termed a poset p [74, 97, 49, 120].

Definition 2 A lattice L [23, 25, 74, 78, 120] is a poset for which each pair of elements a, b possesses
both of the following.

i) A join (least upper bound), denoted by
a ∧ b .

ii) A meet (greatest lower bound), denoted by
a ∨ b .

Definition 3 An element 1 of a connected poset p is a unit alias top element if the following holds.

∀ l ∈ p , l ⪯ 1 . (139)

An element 0 of a connected poset p is a zero alias bottom element if the following holds.

∀ l ∈ p , 0 ⪯ l . (140)

Remark 1 For lattices, these need not exist. But if they do, then they are unique. They need not be
unique in posets. A lattice that possesses both of these is termed a bounded lattice.

Definition 4 A lattice L is complemented if for each element a ∈ L , there is another element
b ∈ L such that the following hold.

a ∨ b = 0

and
a ∧ b = 1 .
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D.2 Power sets as p-cube lattices

Figure 12:

38



Structure 1 The arena of labelled subsets of an N -element set form the power set

P(N) .

This concurrently carries the following levels of mathematical structure [120].

Using subset-expansion order they are Fig 12.b)’s free lattices FN alias N -cube lattices Cube(N) .

They are bounded, with
P(N)0 = ∅

and
P(N)1 = X(N) :

the N -element universe set.

They are distributive complemented lattices. The previous two sentences combine to establish that power
sets P(N) are Boolean algebras.

They are also the commutative groups C2
N .

Motivation 1 For some purposes, these free lattices are too regular to be interesting. Departures
from these are then needed. Consider for instance algebraic structures, such as groups, commutative
groups, Lie algebras or Lie algebroids. Here algebraic relations forbid certain combinations of elements
(or generators) from forming corresponding subalgebric structures. The Physics and Dynamics keyword
associated with these is ‘integrability conditions’ [45, 61, 119].

Example A Relational Mechanics’ [93, 104, 116] Euclidean L and chronos E (equation of time)
constraints form blockwise the square lattice of Fig 13.a). Corresponding to no integrabilities being
present. By which either of spatial and temporal Relationalism [104, 116] can be realized in the absence
of the other.

But General Relativity’s (GR’s) Hamiltonian constraint H cannot be entertained in the absence of
its momentum contraint. For here the momentum constraint M is enforced by the Dirac Algorithm
[32, 54, 104, 117] as follows. Teitelboim’s integrability condition [38] from the Poisson bracket of the
Hamiltonian constraint with itself. Consequently, the Dirac algebroid [32, 40, 94, 104] formed by GR’s
constraints blockwise is the 3-chain of Fig 13.b) .

Figure 13:

Now in one sense this constraint algebroid is Order-Theoretically trivial because it is a chain. But
in another sense it is nontrivial since the default is that it should be free, i.e. the 2-cube lattice, i.e.
the square lattice. And its departure therefrom – 1 missing vertex and 2 missing edges – encodes
Teitelboim’s integrability condition. Which turns out to be a key feature of GR as a dynamical system,
and in canonical attempts to quantize GR [35, 55, 58, 104].
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D.3 Posets comprising competing lattices
Structure 2 Such a phenomenon occurs when a lattice (or other order structure [74, 120]) admits multiple
incompatible extensions.

Example 1 The minimum example is P3−bent (row 1 of Fig 14). This is realized in Sec 6.2. All
realizations in the current Article come from extending sets of commuting matrices from the theory of
quadrilaterals.

Example 2 Another small example realized there is Bannernexus (row 2 of Fig 14).

Example 3 The current Article found some larger examples These are in Sec 6.2, and are members of
the following specific family of that exhibits competing-lattice behaviour.

Example 4 A well-known case (if not phrased in this way until [112, 121] is as follows. That Conformal
Geometry and Projective Geometry are competing top symmetry groups for Flat Geometry.4 They are
incompatible extensions of the similarity group.

D.4 Sánchez’ Wings family of competing posets
Structure 1 [115] Take the p-cube and the q-cube lattices. Identify their bottom vertex. This gluing
creates Wings( p − 2, q − 2 ) , most of the first few cases of which we tabulate in Fig 14.

Remark 1 The nontrivial wings encountered in the current Article are Wings( 0, 0 ) and Wings( 1, 0 )
.

4This working is in ≥ 3-d , and to the exclusion of Supersymmetry.
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Figure 14:

D.5 Sánchez’ Heart family of competing posets
Structure 2 [115] Further identify one bottom-adjacent vertex on each, and each’s edge between these
two. This gluing creates Heart( p − 2, q − 2 ) , most of the first few cases of which we tabulate in Fig
15.

Remark 1 The nontrivial heart encountered in the current Article is Heart( 1, 0 ) .
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Figure 15:

D.6 Discussion
Remark 1 Wings( p − 2, q − 2 ) and Heart( p − 2, q − 2 ) are simple instances of posets realizing
competing lattices. Where the individual lattices in question are p-cube lattices (and thus also Boolean
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algebras and commutative groups [120]).

Notational Remark 1 Our indexing shifts are of the relative or excess type [115, 120]. Calibrated such
that the ( 1, 0 ) cases are the first to have nontrivial graph skeletons.

D.7 Arenas of wings and hearts
Lemma F

Wings =̃ Hearts =̃ p(2) : (141)

the arena of 2-piece partitions. Which forms the trellis-wedge poset of Fig 16.a), whose underlying graph
skeleton is the staircase graph of Subfig b).

Remark 1 The number of objects being partitioned is

K = p + q .

Into pieces p | q , which can be taken to replace the two family labels introduced above. For 2-piece
partitions to be realized, K ≥ 2 is necessary.

Figure 16:
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