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E. Anderson*

Abstract

The Combinatorial matrices’ eigenvalues and eigenvectors are classified. They have < 2
eigenvalues. Other than in the smallest cases, a symmetry-degenerate eigenvalue accompanies
a lone eigenvalue. Excepting in the isotropic subcase, which has just 1 eigenvalue. Finer
classification by zero-count degeneracy, signature and signs present is also provided. Given any
set of Combinatorial matrices of the same size, their eigenbases can be taken to be shared. Up
to the exceptions pointed out in the current Article, their eigenspaces are shared as well.

Dynamics’ centre of mass (CoM) hierarchies return the Jacobi vectors as eigenvectors. The
relative such exhibit a network ambiguity which corresponds to the unlabelled rooted binary
trees. At a first glance, this appears to be an instance of Dynamics producing Combinatorial
objects. These eigenvectors turn out however to arise for any Combinatorial matrix. By which
a more natural perspective is that Combinatorics produces more Combinatorics, with Dynamics
then just reproducing a subcase of this.

The triangle matrices, or more generally 2-simplex matrices, had a number of Abstract Algebra
properties pointed out that Ford determined to follow solely from their all being Combinatorial
matrices of the same size. The current article extends this conclusion to a number of further
Linear Algebra and Spectral Theory properties as well.

Finally eigentheory spectral classifications are taken further using Graph Theory and Order
Theory.
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Introduction

1.1 Combinatorial matrices, with a first few examples

Definition 1 A Combinatorial matriz [17] is a K x K square matrix of the following form.

T+ y T T

C = v
: T
T T rT + Yy

(1)

This is symmetric. x, y € Z covers many Combinatorial uses. We however extend to z,y € R
to encompass Dynamics and Linear Algebra use as well.



Naming and Notational Remark 1 Let us term A. Ford’s notation [66]
C=(x+y, o)k (2)

Ford’s symbol of the zeroth kind.
Remark 1 As explained below, this is the notation selected for use in the current Article. Over the
course of which we shall illustrate Combinatorial matrices with many examples. A conceptually-

primitive first few are as follows; as we develop our main theme — eigentheory — and by pointing to
various Algebraic properties and Geometrical applications, more shall materialize.

Example 0) Setting

we find the zero matrices of all sizes K
0O = (0,0)x (4)
Example [) Setting
r =0, (5)
y =1, (6)
we arrive at the identity matrices
I = (1,0)k . (7)
While relaxing to
z =0, y#0 (8)

yields the matrices proportional to each identity.

Example 1) Setting instead

we encounter the matrices of 1s,
1:=(1,1)k . (10)

Each of which we shall refer to as a block matriz .

Now relaxing to
x# 1, y=0 (11)

produces the matrices proportional to each block.

Example T) Next setting

we obtain the tracefree version of the blocks,
T :=(0,1)k . (14)

t is here the trace per unit size: an intensive variable in Physics parlance. The trace itself is the
extensive variable counterpart,
T =Kt =K(z +y). (15)

Finally relaxing to
t=z4+y=0, y#0 (16)

returns the matrices proportional to each tracefree block.



1.2 Explaining some notation

Notational Remark 2 Among these, | and T are distinguished as the pieces of 1 that are
irreducible: Representation-Theoretically [19, 42] significant.! We pick Ford’s symbol of the zeroth
kind as the current Article’s notation since this corresponds to expanding each C with respect to
the linear basis (LB) consisting of these irreducibles. So e.g. a coordinate-free rendition of (1) is

C =1z1 4+ yl. (17)
As an incipient foil, Ford’s symbol of the first kind [66]
C =ly, 2k (18)

involves the LB consisting of the identity and the block: 1 and 1 . Indeed, this bracket being
square alludes to using the block. Whereas the roundness of the zeroth symbol’s bracket amounts
to reserving the most commonly encountered bracket for our most commonly used symbol.

Example V) Having encountered trace via tracefree Combinatorial matrices dropping out of the
above primitive analysis, the following is also natural to consider. Setting

t=az+y= -1, (19)
x =1 (20)
introduces the trace-reversed blocks
V=(-11)k. (21)
Relaxing to
t=x4+y= —x #*0 (22)

leaves us with the matrices proportional to the trace-reversed blocks.

Notational Remark 3 The following further foil notation is then espied. Ford’s symbol of the
minus-oneth kind [66]
C = (y + 2z, )k (23)

corresponds to the LB consisting of the identity and the trace-reversed block: [ and V . This
is the minus-oneth symbol in the sense of being the reflection about the zeroth symbol of the first
symbol. As an ‘image’ of a type of piecewise-linear bracket — square — it is then denoted by another
type of piecewise-linear bracket: the chevron.

Naming Remark 2 Irreducible, block and trace-reversed cases of Combinatorial matrix symbols are
respectively truer names for the above three symbols.

1.3 Outline of the rest of this Article

We introduce arenas [58, 51, 59] in Sec 2, with Combinatorial matrix [66] and widely-used Linear
Algebra [10, 45, 48] examples. We classify Combinatorial matrices’ eigenvalues and eigenspectra
in Sec 3. And Eigenvectors and eigenspaces in Sec 4. Including the paradigm shift from N-
body problem terminology and conceptualization to the general Combinatorial matrix setting. Sec
4 includes pointing out that any Combinatorial matrices of the same size can be taken to share
eigenbases. They all need to be isotropic, or all need to be generic, in order to share eigenspaces as
well.

In the process, further Algebraic and Geometric examples of specific Combinatorial matrix are
pointed out. A. Ford [66] has recently demonstrated that various Abstract Algebra properties that
I attributed to [54, 60, 61, 62] the 3 triangle matrices follow purely from this being Combinatorial
matrices. The current Article complements this with Linear Algebra and Spectral Theory results.
Appendix A includes condensing most of Sec 3 and 4’s results. The remainder — the paradigm shift —
enters instead the Conclusion (Sec 5)’s comparison table. Finally Appendix B takes the classification
of eigenspectra further, using Order Theory [58, 31, 39] and Graph Theory [37] underpinning this.

1Matrices proportional to the identity also have particular Representation-Theoretic significance through entering
Schur’s Lemma.



2 Arenas

Structure 0 Given a type of mathematical object, the corresponding arena is the space formed
by the totality of mathematical objects of this type. What topologies are natural to each arena
is then always a good question. So via arenas, Modern Applied Topology [58, 51, 59] becomes
adjacent to every other STEM subject, or indeed to every other subject with at least some objects
sharply-defined enough that we can contemplate what their arenas are.

2.1 Arenas of Combinatorial matrices

Definition 0 Focusing this modern Applied Topology line of thought on our main subject matter,
Combinatorial matrices form the arenas
CMR(K)

for each fixed K . The cumulative arenas
K
CMR[K] = [p _ o CMr(P)
up to whichever fixed K . And the fully cumulative arena

CMR = CMg[oo] .

2.2 Vector spaces

Remark 1 Both for the Reader’s convenience and as regards developing our subject matter, various
examples of arenas that entered widespread use long before the advent of modern Applied Topology
are provided in the current Article.

Vector spaces U over R are our first such: the arenas of all R-linear combinations (LCs) of vectors
with a given number of components. Or, more generally of whichever objects that are meaningfully
represented by vectors. So e.g. polynomials, matrices under addition and multiplication by a scalar,
and functions [46] are also covered.

Structure 1 We have the good fortune that the CDir(K) are vector spaces.

And the further good fortune that for K > 2 | they are copies of the same vector space. This
occurs via each Combinatorial matrix being described by just 2 parameters — = and y , which
are both active for K > 2 . These can each take arbitrary values in R . Yielding the common
vector space

CMR(K > 2) = R?. (24)

This accounts for why the 3 LBs mentioned each have 2 elements.

For K = 1 , Combinatorial matrices collapse to just numbers. With only 1 active parameter:
the one that becomes the trace, t = = + y . Yielding the 1-d vector space R! over R , i.e.
just R itself:

CMr(1) = R' = R. (25)
Finally K = 0 is exceptional in that the sole object supported here is the unmatriz, which in

many ways is not a matrix at all. While the unmatrix contains just an empty set’s amount of
information, the set of unmatrices itself constitutes a point. So identifying this as the zero point, it
is possible to regard CMMR(K) as a vector space, R® = {0} .

Remark 2 Thus also the COR[K] are disjoint sums of vector spaces. With < 3 types of vector
space present, due to the swift onset of the persistent R? vector space.

So we also have

CMg[0] = RO = {0},
CMg[l] = RO i R = {0} R, (26)
Me(K] = ROuR'wo [L_,R2 = {o}uRu [[L_ R



Where the last result holds for each K > 2 |, with
k=K —1. (27)
This immediately extends to describing CIg as well:

Mg = RuRwo [[_;R = {0juRu [I;_,R?. (28)

2.3 Eigenspectra, multiplicities, and eigenspaces

Definition 1 [18, 48, 35, 45, 74] Let A. denote some eigenvalue of a size-K square matrix M
The algebraic multiplicity «. of M is the number of times that it occurs as a root of the
characteristic polynomial.

Remark 3 The totality of eigenvalues for our matrix form its eigenspectrum, with algebraic mul-
tiplicities included, Espec(M) . With algebraic multiplicities excluded, we have a sparser version
Cspec(M) . With however

Y a =K. (29)
espec(M)

FEigenspectra are also arenas, albeit, for finite matrices, they are rather structurally simple ones.

Definition 2 An eigenvalue A.’s minimal multiplicity p. is the number of times that it occurs as
a root of the minimal polynomial.

Remark 4 Denote eigenvectors corresponding to A by v, . So as to form a linearly independent
(LI) set that is as large as possible. Le. a LB for the eigenspace €ig,(M) corresponding to A
In some cases, this is of dimension «, , while in others, not as many LI eigenvectors as this can be
found. This deficit is measured by the following further multiplicity.

Definition 3 An eigenvalue \.’s Its geometrical multiplicity . is the dimension of its correspond-
ing eigenspace,
Ve = dim (€ig,(M)) . (30)

Remark 5 There is also a larger notion of eigenspace:
Cig(M) := Pp e (31)
e € espec(M)

These smaller and larger notions of eigenspace are somewhat more structured simple and widely-
used examples of arena. Their structure lies well within basic Linear Algebra, consisting of vector
subspaces and direct sums thereof respectively.



3 Combinatorial matrices’ eigenspectra

3.1 Eigenvalue degeneracy due to symmetry

Naming Remark 3 This involves one of two unrelated uses of ‘degeneracy’ used in literature on
Eigentheory and its applications. Namely, that which is often found in Quantum Mechanics (QM)
[33, 16, 15, 49] and Mathematical Physics [13]. Here, algebraic multiplicity «. > 1 for some
eigenvalue A, .

Classification Theorem 1 for Combinatorial matrices)
G) A Combinatorial matrix’s eigenspectrum consists of the following.
z := Kz + y with algebraic multiplicity 1, (32)

y with algebraic multiplicity & , (33)

Unless the Combinatorial matrix is of one of the following exceptional kinds.

1)

x =0, (34)
for which the sole eigenvalue is
y with algebraic multiplicity K . (35)
U)
K =0, (36)

for which there are no eigenvalues at all.

Notational Remark 4 Let us henceforth index these eigenvalues by their algebraic multiplicities!
Let us also denote the C of type G) by G and those of type I) by I .

Remark 1 These exceptional cases arise from the following argument. For K > 2 | k > 1 ,so
both eigenvalues are realized (not necessarily distinctly). The linear equation for equal eigenvalues
is then

Ky +y=2=uy. (37)

Which cancels down to
Kz =0. (38)
And which of course admits 2 solutions: z = 0 and K = 0 . The first is meaningful: isotropy.

While the second is spurious, for our linear system rests on K > 2 .
But one needs to append the 2 cases excluded by the argument.

For the numbers, K = 1 so k = 0 . Thus the eigenvalue y does not occur at all. This gives
a rather trivial realization of isotropy: since there is only 1 direction, every direction must be the
samel!

While K = 0 - the unmatrix — has no room for eigenvalues at all. So the unmatrix realizes the
uneigenspectrum: an incarnation of the empty set () consisting of no eigenvalues... Also it comes to
pass that the above spurious solution coincides with a non-spurious appended case. The unmatrix
even manages to be isotropic in the even more trivial sense that all directions are the same whenever
there are no directions. For all that this realization merits the qualifier unisotropic [so long as this
is not confused with the much more widely used anisotropic...]

The generic case G) of the theorem is covered in e.g. [57], without mention however of the exceptional
cases I) and U).



Remark 2 That Combinatorial matrices support < 2 distinct eigenvalues is rooted on these being
only 2-parameter matrices. So they have no space for > 2 pieces of information. Leaving their
number of distinct eigenvalues thus constrained. In this way, the cumulative arenas’ swift persistent
onset of copies of the same vector space leaves Combinatorial matrices spectrally-truncated as well.

Remark 3 This subsection’s notion of degeneracy is indeed underpinned by symmetry, as is par-
ticularly clear from the QM literature [33, 16, 15, 49] for the ground-state value of the energy
eigenvalue for the Hamiltonian operator. Which are then indexed by the corresponding group. For
real-symmetric Combinatorial matrices, in case I), we have the total isotropy group — the orthog-
onal group O(K) - hence I) truer-denotes isotropy. While in case G), this is restricted to the
next-largest partial isotropy group: O(k) . With G) now truer-denoting that among real Combina-
torial matrices, this constitutes the generic case. In this way, real Combinatorial matrices are highly
non-generic in the space of all (or even all real-symmetric) square matrices... That real-symmetric
matrix eigentheory and orthogonal transformations are related is well-known. Let us postpone to
Sec 3 commenting further on which groups are involved, and on how to interpret these symmetry
degeneracies.

Remark 4 The isotropic condition z = 0 revisits a condition present in Sec 1. It corresponds to
2 examples there: O and o [ . The current Subsection does not have the means to distinguish
between these two cases, while the next does.

Remark 5 In the generic case G), K > 2 exhibits a k|1 partition of the underlying vector
space by eigenvalue into the corresponding eigenspaces.

K = 3 is minimum for this partition to be into a larger piece —size £k = 2 — and a smaller piece:
size 1 (Subfig ¢). And thus to have a dimensionally-nontrivial eigenspace. These features clearly
persist for all subsequent K .

Remark 6 Let us also introduce the 0-symmetry-degeneracy fractions
e
Ao = fe .

Clearly for whichever set of partitioning fraction variables? the total sum of fractions is unity:

> A =1. (39)

Cspec(M)

In case G), this reads

A + A, = 1. (40)
While in case I), this just becomes the identity 1 = 1 ,via ax = K .

3.2 Zero-eigenvalue count degeneracy

Remark 7 Degeneracy in this sense comes from the study of quadratic forms [32].

Remark 8 Let us also denote a K x K matrix’s counts of zero and nonzero eigenvalues by K
and K, respectively. So
Ky + Ko = K. (41)

Also bring in the 0-eigenvalue degeneracy fraction

K
ICO = ?0

And the 0-eigenvalue nondegeneracy fraction
K.
K
2Compare for instance mass fractions in Physics and Dynamics, and partial-pressure fractions in Physics and
Chemistry.

Ke =




Which of course obey
Ko + Ke = 1. (42)

Classification Theorem 2 for Combinatorial matrices The isotropic case I) now splits into 2
subcases as follows.

0)
y =0, (43)
yielding the zero matrix
0 = (05 O)K
For which the eigenvalues are all 0, i.e.
0 with axk = K : Ko = K, Ko = 0. (44)
And 1)
y #0, (45)
for which we have a matrix proportional to the identity,
ql, ¢ # 0. (46)
Here the eigenvalues are all ¢ , i.e.
q with ag = K, while K, = K, Ky = 0. (47)

The generic case G) also contains 2 subcases that manifest zeros.

k-0)
y =0, Kz #0. (48)

Which are the matrices proportional to the block matrix>
1:= (1,1)k .

I.e. the matrix whose entries are all 1 . So

ql, ¢ # 0. (49)
Its eigenvalues are
0 with ap, = k Ky = k (50)
And
Kz with o = 1: Ky =1 (51)
0-1)
z=Kx+y=0, y#0 (52)
Which are the matrices proportional to
P =K'k —1)k. (53)
For which the eigenvalues are
0 with oy =1 : Ky = 1. (54)
And
y with ap = k. (55)

G) contains furthermore a case with no 0s: k-1).

3This matrix occurs in Graph Theory and also in the role of identity for the element-wise product of matrices. See
Subsec 3.3 for a further special Combinatorial matrix proportional to this one.



In contrast, for case I), the eigenspace is unsplit (a 1-piece partition K ). While for case U), the
eigenspace is the unpartition of the empty set!

Remark 9 For K = 0 , the unmatrix has no eigenvalues and thus no capacity to exhibit zero
eigenvalues.

Remark 10 The current Subsection partners the linear equation
z =0
— shared with Sec 1 and Sec 3.1 — with the following new linear equation.
z =Kz +y=0. (56)

These are also the 2 ways in which the determinant of a Combinatorial matrix C can be zero.
And thus that C itself can be singular.

Compare (56) with Sec 1’s zero-trace equation (12); both determinant and trace are invariants. In
fact, for K = 1 , t = 0 and z = 0 coincide. This reflects that K = 1 are just the
numbers, which do not support distinct trace and determinant...

3.3 Combinatorial projectors

Structure 2 At the level of eigenvalues, a nontrivial projector [35, 43, 45, 27, 74] has eigenvalues
0 and 1 . Since this is a specialization of having 2 distinct eigenvalues, it is compatible with
class G). And more specifically with zero-count degenerate such.

Remark 11 There are 2 orders in which a Combinatorial matrix can implement such eigenvalues
at the level of a linear system of equations. Firstly,

z =Kz +y=0, y=1. (57)
Which is solved by
PK) = K ' (k, —1)k . (58)
Secondly,
z2=Kzx4+y=1, y =0. (59)
Which is solved by
P (K) = K*'(1,1)g = K'1. (60)

Remark 12 We already encountered P(K) in the previous subsection; we have now established
that this is a projector. While P (K) is the special Combinatorial matrix alluded to in footnote 3.
Since Combinatorial matrices are symmetric, and we have taken them to be R-valued, projectors in
this context are automatically orthogonal [35, 43, 45, 27, 74]. Finally, P, (K) is the complement
of P(K)

3.4 Combinatorial involutors

Structure 3 At the level of eigenvalues, a nontrivial involutor [12, 71] has eigenvalues £1 . Again,
this is a specialization of having 2 distinct eigenvalues, which is thus compatible with symmetry-
generic Combinatorial matrices. Now more specifically with zero-count nondegenerate such.

Remark 13 There are 2 orders in which a Combinatorial matrix can implement such eigenvalues
at the level of a linear system of equations. These can now be jointly posed and solved as follows.

z=Kzx +y= =1, y = F1. (61)

Which are solved by
+J(K) = +K'(2 - K,2)k . (62)



3.5 N-body problem subcase
Notational Remark 5 For this let us use the notation N in place of K .
Structure 4 Here one has a constellation of N points-or-particles in R? space. Given a possibly

transient absolute origin, each point-or particle has a position vector relative to this. The space of
all possible constellations is the configuration space [11, 21, 53] constellation space,

q(d; N) = RN,

Each point-or-particle can also be allotted a label. The space of all possible LCs of point-or-particle
labels — position labels — is constellation label space,

Lq(N) = RV

One then passes to separation vectors between points-or-particles. Absolute origin dependence
cancels out of these.

Structure 5 The space of all linearly independent (LI) separation vectors is the configuration space
relative space

NRel(d, N) = RN .

Naming Remark 4 This name is used in e.g. [53, 71], with reference to an LI set of relative
separations or of relative differences.

Remark 14 Each separation in an LI set can be allotted another label, now with values running

from 1 to
N :=n—-1. (63)

The totality of LCs of which form in turn relative label space,
LRel(n) = R™.

[63, 71] explain how the above £ versions are active factors in the corresponding multi-index
tensor product £ -less versions. Passing to el(n) and £9Rel(n) amounts to quotienting out
translations, Tr(d) . Various further simple quotienting procedures [30, 34, 53, 68, 71] permit
handling dilations and 2-d rotations.

Remark 15 P(K) is the projector onto relative label space (see Sec 4.1 for further interpretations
as a projector). Which takes the form

P(K) = K ' (k -1k . (64)

Another alias for this is positions-to-relative separations matriz at the level of the internal labels
[563, 71]. Yet another alias is Lagrange matrix [4, 53, 71]. For all that P is numerically, and yet
not Physical-dimensionally, equal to this [61, 71]. For N = 3 , the above specializes to

P = -(2-1). (65)

SN

3.6 N-vertex and n-simplex cases, with triangle or 2-simplex examples

Remark 16 These refer to two ways of describing the Geometrical counterpart of the N-body
problem. Within the translation and rotation quotiented setting, the following are natural for
N =3 .

A) Apollonius’ theorem [1, 26, 50, 71] for expressing a triangle’s median lengths in terms of
its side lengths. The Euler 3-cycle — over sides — of this can be expressed as a matrix equation
[54, 60, 71]. Whose matrix turns out to be proportional to an involutor: the ‘Apollonius’ involutor,

J = -(-1,2). (66)

Wl



A functional alias for this is sides-medians length-exchange involutor. Medians, and J , can be
defined to transcend to [71] arbitrary dimension — whether spatial or configuration-occupying — So
J is more generally a 2-simplex matrix. We finally recognize this as the J(3) subcase of (62).

B) Heron’s formula [2, 12, 44, 52, 71]. The square of this, when viewed as a quadratic form, is
built out of the following matrix.

F = (-1,1). (67)
Which was first written down in linear system form by Euler [3] and explicitly as a matrix by

Buchholz [24]. At which level the names Heron matrixz or, more functionally, sides-data triangle area
formula matriz, are suitable.

It was however subsequently pointed out to occur in the Euler 3-cycle of cosine rules, and even
of triangle inequalities. By which the name fundamental triangle matriz [60] and the notation F
are more appropriate. Its fundamentality [54, 61] is further warranted by its ties to Hopf’s little
map [9, 40, 41, 72]. It furthermore transcends to [71] arbitrary dimension — whether spatial or
configuration-occupying — sealing our final name for it: fundamental 2-simplex matriz. We also
recognize this as the V(3) subcase of the trace-reversed Combinatorial matrices (21).

Structure 6 (65, 66, 67) are the 3 triangle matrices, or more generally by transcending arbo-
trary dimension, the 3 2-simplex matrices. In each of their equations, we have dropped the K
subscripts since they are all 3 ’s).

Remark 17 Allof T, J, F and P for N = K > 2 are generic in sense G). P is of subclass
k-0), while the other 3 are of subclass k-1).

Remark 18 P isthe K = 3 projector of rank 2 .
J is one of the two signs of K = 3 involutor.
F isthe K = 3 trace-reversed matrix.

Thus our purely algebraic considerations manage to find all of these. For all that these considerations
do not single them out among various other involutors, projectors and Representation-Theoretically
privileged matrices.

3.7 Physicists’ signatures

Remark 19 For a real-symmetric matrix, all the eigenvalues are well-known to be real. It is thus
meaningful to allot a sign to each. Whether + or — for each nonzero eigenvalue. Or + |
or 0 for every eigenvalue.

Notational Remark 6 Let K, and K_ denote the counts of positive and negative eigenvalues

respectively. In each case with algebraic multiplicity included. Let

K
K+ = ?i
So that
Ko + Ky + Ko =1.
Also for matrices with K, # 0 , define
K

ND:t =

So that
NDy + NDy + ND_ = 1.

10



The Ky are furthermore reflectively-symmetrically defined. To the extent that which is + and
which is — is often taken to be a convention.*

Thus
AK = K, — K_

is in some ways a more meaningful difference than
0K = Ky — K.

would be. Hence the difference in notation. A is moreover not only reflectively-symmetric but also
a proto-index.®

A K is furthermore (one sign convention choice of) the Physicists’ signature in summary. The
signature in detail exhibits how many + ’s;, — ’sand 0’s are present. E.g. — + + + for
one sign convention for Minkowski spacetime. Or + + + 0 for the 4-body problem’s Lagrange
projector P ... This notation is used in Fig 2; with a truncated version of it in Figs 4 and 6. More
efficiently especially for much larger examples, it is the Author’s sign triple

(K+7 K—a KO) :

Though S. Sénchez’ presentation [56]
(K07 K., A K)

is a more elegant sign-space LB choice. Picked so as to manifest the signature-in-summary proto-
index among its LB elements... This kind of parametrization also permits exhibition of beloved cases
in which K4 are infinite and yet A K manages to remain finite.

Classification Theorem 3 for Combinatorial Matrices In the generic case G) away from zeros
—k-1) — there are for K > 2 4 nontrivial cases for signs of eigenvalues.

++)
y >0, z=Kz+y >0. (68)

is positive-definite: all eigenvalues > 0 |

K+ = K .
y <0, z=Kz+y<20 (69)
is megative-definite: all eigenvalues > 0 :
K =K
+-)
y >0, z=Kzx+y <0 (70)

is minimally indefinite with sign convention

——) is also minimally indefinite
y <0, Ko +y > 0, (71)
albeit with the opposite sign convention:

K. =k, K, =1.

480 in Special Relativity, spacetime is modelled with — for time and + for space or vice versa!

5This is in the sense of index theorems; compare the Poincaré index formula [22]. The rank-nullity [74], Gauss—
Bonnet [75], Riemann-Roch [25] and Atiyah—Singer [23] index theorems. And quite a few basic Combinatorics examples
in [58] and basic Geometry examples in [71]; see footnote 6 for some examples of each.

11



Remark 20 So while we have hitherto used linear (systems of) equations, we now pass to linear

(systems of) inequalities.

Remark 21 K = 2 has both + —) and —+) collapse to the balanced [65, 71] situation:

Ky

K_

And indeed are minimally balanced:

Balanced entails + <> — symmetry. Which in the
[14]. For K > 3, however, there is a larger + or

K, > K_

or
K, < K_

which is a symmetry-degenerate eigenspace.

+ - case has well-documented consequences
— eigenspace. lLe.

)

Remark 22 The Physicists’ signature in summary provides the following further interpretation.

Balanced the corresponding null proto-index condition

AK = 0.

While the quantifier of departure from balance,
Imbalan(M)

is the corresponding nontrivial index.

Case k.0) also supports just 2 : its single nonzero eigenvalue can be

Le.

y >0, z

And

y < 0, z

Case 0.1) also supports just 2 : its nonzero eigenspace
Le.

y =0, z >
And
y =0, z <
For K = 2, both k.0) and 1.0) have
K, = Ko, K_
Or
K_ = KO; K+
While for K > 3 , 1.0) has
K. > Ko, K_

6

AK

— or + , giving k.0.%).
0. (72)
0. (73)

can be positive- or negative-definite: 0.1.%£).

0. (74)

(75)

0.

6This conceptual type covers the Euler characteristic on the circle and the tori, and thus Gauss-Bonnet type
theorems thereupon. Grinberg’s theorem in planar Hamiltonian Graph Theory [56, 58], Whose index is inside-outside

triangulation strength imbalance. And which theorem we thus

renamed ZIPHON: ‘zero-index planar Hamiltonian

Necessity’. Varignon’s theorem and Euler’s 3-simplex theorem in Flat Geometry, along with ‘smaller’ infinite families

of generalizations [55, 71]. Whose common index is the left-right
trees.
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Or
K. > Ky, Ky =0.

Case I) supports just 2 sign choices: positive- or negative-definite: 1.:|:). Le.
y >0, z =0. (76)

And
y <0, x

I
o
—~
N}
~J
~—

We gather up all cases in Fig 2’s end-table.
Remark 23 Allof T, J and F are of type G).k-1).—+).

Remark 24 Combinatorial matrices’ nondegenerate sectors must be elliptic — all of the same sign
— or hyperbolic: with a single opposing sign. This helpfully banishes a rather harder [14] and much
less understood case — ultrahyperbolic: with > 2 copies of each sign — from being realized in our
arena C9g

3.8 Multiplicity equalities

Definition 1 An eigenvalue is semisimple [48] if its algebraic multiplicity coincides with its geomet-
rical multiplicity. A matrix is diagonalizable iff all of its eigenvalues are semisimple. A matrix is
minimally-minimal [65, 71] if its minimal polynomial is of the lowest-possible order.

Proposition 1 All the C € C¢Mig have
Q. = 7y, foreach A, . (78)
And thus are, on the one hand, diagonalizable. On the other hand, they enjoy the arena equation
B(K) = eig(C), (79)

Which can be viewed as a completeness relation. I.e. the spectral completeness relation that the
eigenvectors of C' form a LB for the whole K-dimensional vector space that C naturally acts
upon.

Proposition 2 All Combinatorial matrices’ are minimally-minimal:

e = 1 for each A, . (80)
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4 Combinatorial matrices’ eigenvectors

4.1 N-body subcase

Remark 1 In this context, the generic G)’s lone eigenvector corresponds to the CoM position vector
label R . Which is the normalized version of the vector of 1 ’s. And whose linear span (LS) forms
the eigenspace

¢ig, (G) = coM(1) = R.

Remark 2 Also in this context, the generic case’s symmetry-degenerate eigenspace is relative label
space:
Cig, (G) = LRel(n) = R". (81)

This can be studied by considering a LB of separations between points-or-particles.

Remark 3 These eigenspaces fit together to form
RY = ¢ig(G) = ¢ig,(G) & ¢ig,(G) = CoM(1) @ Dif(n) . (82)
Remark 4 In contrast, in the isotropic case I), there is a single irreducible eigenspace

RY = eig(I) = eigy(I) . (83)
Remark 5 For N = 1 |, this LB is empty.

But for N > 2, it is not.

For N > 3 | however, this LB is not diagonal. Passing to point-or-particle cluster separa-
tions — between subsystem CoMs — attains diagonality however. In the Dynamics context, this
(non)diagonality is manifested by such as the total moment of inertia and the kinetic energy. The
corresponding cluster separation vectors have hitherto been called relative Jacobi vectors [5, 29, 30,
53, 68, T1].

Remark 6 For N = 3 | 3 possible labellings of these are possible. This correspond to the
number of ways of making a pair subsystem, or equivalently, of leaving out a single point-or-particle.
This ambiguity growingly persists.

Structure 7 For K = 4, further network ambiguities appear. The clustering structure can here
be H- or K-shaped; these have often been called the Jacobi-H and -K .

Remark 7 The inertia and kinetic quadrics in relative coordinates can be modelled using the
Lagrange matrix. In the case of equal particles, this is numerically equal to the projector onto
relative space, P . In this way, contact is made with Combinatorial matrices and their eigentheory.

Remark 8 Given Remark 1, we can now further qualify on the one hand that P amounts to
projecting out the CoM label; hence the name CoM-removing projector. Another alias is relative
label space projector. The first of these bears some relation to the common practise in Physics of
passing to the CoM frame. And furthermore explains Montgomery’s [68] alias for relative space:
centred configuration space, with reference to centering about the CoM position. This space featured
in e.g. [30, 34] long before the above and Sec 4.1’s references.

On the other hand, the orthogonal complement projector P, projects onto the CoM label space.

Naming Remark 5 A truer name for relative Jacobi coordinates is eigenclusterings [55, 53, 71].
Ao S

Remark 9 P is generic in sense G), so the full underlying symmetry is O(n) . In the N-body
problem context, these have been termed internal rotations, alias democracy transformations [29)].
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These are internal in the sense that they act not on space but on the internal space of point-or-particle
labels.

Remark 10 The network ambiguity also growingly persists, forming [38, 63] the unlabelled rooted
binary trees (URBT) [37, 47, 58] The counts of which are [63] the Wedderburn—-Etherington numbers
[6, 8, 20, 69]. While the previous ambiguity goes like the sizes of the corresponding orbits of the
permutation group Sy acting on the labels.

Structure 8 Each N > 1 supports a generalized-K LB of relative Jacobi vectors. This corre-
sponds to each N supporting an URBT which, upon defoliating once [63], is the straight path
P, [63]. Aside from Pj corresponding to K-shaped clustering, Py is T-shaped: side and
corresponding median. While P; just involves the incipient point-or-particle separation.

Remark 11 Take any eigenbasis of relative Jacobi vectors and adjoin R . This forms the corre-
sponding (absolute) Jacobi vectors, alias eigenclustering vectors with CoM position adjoined. Hith-
erto, in the Dynamics literature, the Jacobi vectors were credited to CoM hierarchies. Which can be
reformulated as choices of eigenbasis for the Lagrange matrix, and thus the relative space projector
P . Which exists for any N-body problem in any R? .

4.2 Generalization to any Combinatorial matrix

Remark 12 Let us now shift away from the above context to Combinatorial matrices in full general-
ity. The generic G) case’s lone eigenvector U corresponds to the sum of the Combinatorial counts
acted upon. Or equivalently, given subsequent normalization, the average of the Combinatorial
counts. Whose LS forms the eigenspace

¢ig, (G) = AoC(1) = R.

Remark 13 Relative separation labels of pairs of point-or-particle positions become differences
between our Combinatorial counts. Now forming the generic G)’s symmetry-degenerate eigenspace
difference space

eig, (G) = Dif(k) = R*. (84)

This can be studied by considering a LB of differences between our Combinatorial counts.
Remark 14 These eigenspaces fit together to form

RY = ¢ig(G) = ¢ig;(G) @ ¢Cig,(G) = AoC(1) @ Dif(G) . (85)
Remark 15 In contrast, in the isotropic case I), there is a single irreducible eigenspace

RE = eig(I) = eigx(I) . (86)

Remark 16 For K > 3 | the above LB of differences is not diagonal. Passing to LCs of these —
count subset differences: between 2 subsets’ counts — attains diagonality however.

Naming Remark 6 Given this more general context, combinatorial-matriz eigenvectors, or for
short eigencombinatorial vectors, is in turn a truer name than eigenclustering vectors.

Remark 17 For K = 3 , 3 possible labellings of these are possible. This correspond to the
number of ways of making a pair subset, or equivalently, of leaving out a single count.

Remark 18 P now amounts to projecting out the AoC, giving the more generalized name AoC-
removing projector. And onto difference space, hence difference space projector. While P, is the
AoC label space projector.

A h

Remark 19 Take any eigenbasis of eigencombinatorial vectors and adjoin U . This forms the
corresponding extended basis of eigencombinatorial vectors with CoM position adjoined.
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Remark 20 The eigencombinatorial vectors present the same network ambiguity of URBT form as
described above.

Proposition 3 Any K > 1 Combinatorial matrix can be equipped with an extended generalized-
K eigencombinatorial eigenbasis.

Proof A generalized K is available for all K as the straight P, URBT. Form the difference
between a first pair of objects. Next form the difference between the sum of these and twice a third
object. Apply this move recursively between the sum of the first p — 1 objects used and p — 1
times a pth object. Finally adjoin U . O

Proof of proposition 1. Using this LB, 7. = a, foreach e . O

Exercise 1 Prove proposition 2.

LR

Remark 21 In the case of a general network, each step uses rather the difference between left-
and right-child sums. Which are the Combinatorial abstraction and generalization of the subsystem
CoM labels.

Remark 22 The URBT ambiguity was long known to arise from CoM hierarchies: Mechanics to
Combinatorics. A more natural perspective is that general Combinatorial matrices give further
standard Combinatorial objects as their eigenvectors. The CoM hierarchy then behaves as it does
by being a subcase. In this way, we have passed to a purely Combinatorial explanation.

Remark 23 Eigencombinatorial eigenbases are only a measure-0 subset of the possible eigenbases.
This is based upon the relative sizes of the finite permutation subgroup Sk versus the infinite
orthogonal group O(k) corresponding to allowing all R-LCs. So far as the Author is aware, the
Combinatorial literature has not pinned a name on this generalized setting for what Molecular
Physicists call internal rotations or democracy transformations.

4.3 Eigevector classification

Classification theorem 3 for Combinatorial matrices With reference to a cover by some
of the above-defined cases, a Combinatorial matrix’s normalized eigenvectors take the following
corresponding forms.

G) The normalized unit vector. Alongside any normalized LB choice of LCs of relative-difference
vectors.

I) Any normalized LB for R¥ will do.
U) The uneigenbasis consisting of an empty set’s worth of eigenvectors.

Proof G). For the lone eigenvalue, the eigenvector equation is
(—kz,z2)xk - = 0. (87)

Which is solved by

Finally divide by the corresponding normalization factor

= VK. (89)

For the other eigenspace’s eigenvalue,
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Which is solved as claimed.

I) The eigenvector equation now reads
(0,0)k -x = 0. (91)
Which places no restrictions on what x can serve as an eigenvector.

U) Now there is no eigenvector equation, but no vectors to restrict either. The restriction of the
empty set () by the ( empty set of equations ) is of course just () again. O
4.4 Sharing eigenbases and eigenspaces

Corollary 1 Any generic set of same-size Combinatorial matrices can be taken to share eigenbasis.
If none of them are isotropic, then they additionally share the underlying k|1 partition into
eigenspaces as labelled by eigenvalue (Fig 1.b).

Proof For K = 0 , all must be copies of the unmatrix, and thus share the same empty set of
eigenspaces.

For K > 1 , by theorem 3 any LB for R¥ will do for class I). So pick the extended version of
the generalized-K LB so as to match class G). O

In Fig 3, this alignment is drawn out using green for I)’s single eigenspace and blue and yellow for
G)’s pair.

Proposition 4 Suppose that we are given a set of size-K Combinatorial matrices. Then they share
eigenspaces iff either of the following hold.

) K <1
ii) K > 2 and they are either all generic G) or all isotropic I).

Proof For K = 0 , each matrix in the set can only be a copy of the unmatrix. All of which share
the same eigenspaces: no eigenspaces at all!

For K = 1 ,only 1 eigenspace can be realized and thus must be shared by all.

For K > 2 , two cases work out. Firstly, a set of isotropic matrices with the same K shares the
same K-fold eigenspace. L.e. the whole vector space acted upon. Secondly, a set of generic matrices
with the same K share the same 1-d eigenspace in each case with the same k-fold complement.
The remaining case — sets containing > 1 G) and > 1 I) do not work out, by concurrently
realizing both the split and the unsplit eigenspaces. O

Corollary 2 Our 3 2-simplex matrices

i) possess a shared eigenbasis, which can be taken to be the extended version of T .

ii) They share eigenspaces.

Proof i) All of these matrices are Combinatorial and of the same size K = N = 3 . So theorem
3 gives that they share eigenbasis. And that this can be taken to be the extended generalized-K
eigenbasis. Which for K = 3 is the extended T .

ii) All of these matrices are generic G). So proposition 4 = that they share eigenspaces. O
Remark 24 This replaces [60, 61, 62]’s piecemeal Geometrical considerations. Paralleling Ford’s

[66] observations that the 3 2-simplex matrices commuting with each other follows just from their
being Combinatorial matrices of the same size. As do their Abstract Algebra properties. Unique
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specifications of P and J as a particular Combinatorial matrix projector and involutor follow
from whichever of Ford’s account and the current one.

5 Conclusion

Remark 1 We form a comparison table in Fig 1 for the current Article’s paradigm shift from N-
body problem use of Combinatorial matrices to general use. A large part of the theory of centres
of mass is thereby reduced to Combinatorics. And we have a precise name for what Physicists’
‘hierarchies of subsystems’ CoMs’ are. I.e. one very specific realization of the URBTSs; see [63] for
the precise correspondence. With each CoM’s 2 input subsystems being the right and left children
of that CoM as viewed as a node.

Remark 2 We summarize many of the current Article’s other results so far in Appendix A. And
take our study of eigenspectral classification for Combinatorial matrices further in Appendix B. This
is by use of Order Theory alongside more structurally sparse Graph Theory undepinning this.

Pointer 1 Combinatorial matrices are often taken to be Z-valued in Combinatorics. Thus forming
the arena €9z . The current Article’s analysis extends to €Ik for its Dynamics and Geometry
significance, and Linear Algebra specifics of our workings. for R-valued models. Let us leave the
yet more general CI¢ for another occasion.

Pointer 2 As regards n-simplex matrices, some remaining open questions are as follows [64, 65, 67].
Which sets of same-size quadrilateral matrices commute, form multiplicative commutative monoids,
share eigenspaces and share eigenbases? For here not all of the matrices in any of these sets considered
are Combinatorial...

Acknowledgments I thank A. Ford, K. Everard and S. Sdnchez for discussions. And other partici-

pants at the “Linear Algebra of Quadrilaterals" Summer School 2024 at the Institute for the Theory
of STEM.
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‘Wheelerian comparison table

H N-verte: -simple q q q
Notions & quy vertex st p X General Combinatorial matrices C
matrices matrices matrices
S— —
Dynamics Geometry Combinatorics
In particular the equal-masses
Lagrange matrix, L ,
which is numerically equal to Two specific cases among which are
CoM-removing projector P. the average-count removing projector P .
Examples

Whose complement is the
CoM projector P, .

The Apollonius involutor J
and the fundamental 2-simplex matrix F
also appear in Geometrical study

And its complement the
average-count projector P, .

We do not however need P
in order to develop the theory.

Eigenspaces: lone CoM label direction space  Cotn (1) —}>  Average of counts direction space SoC(1)
[A2025]
symmetry- Relative label space £0Rel(n) i Difference space  Dif(k)
degenerate [1990s7] [A 2025]
eézrigztzi' \ Jacobi vectors
traditional name 1 eting]
Degenerate space's i i
eigenvectors' Relative Jacobi Ve;ctors
traditional name [IQ?OS 7]
D t ! . Y
egfngs;t?r?e s Eigenclustering vectors i Eigencombination vectors
& : [SA 2018] [A 2025]
conceptual name
Totality of Eigenclustering vectors Eigencombination vectors
eigenvectors: extended by CoM vector —1—>  extended by average-count vector
conceptual name [SA 2018] [A2025]
L H versus K network ambiguity for N=4
Network t
etwork ambiguity [19th century]
Unlabelled rooted binary trees: Unlabelled rooted binary trees:
Mechanics Combinatorics
producing producing more
Combinatorics Combinatorics
[e.g. S2002] . [A2025]
Now however explained as
a subcase of
Combinatorics
producing more
Combinatorics
[A2025]
Labelling ambiguity Sy orbits Si orbits
Full ambiguity: X O() , R A02((;{2)5
G called internal rolatlon§ [ 1
or democracy transformations n
\
Isotropic case I) O(N) O(K)

Figure 1:
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A Eigenvalue and eigenvector classifications

Remark 1 We condense many of Sec 3 and 4’s other results into tables 2 and 3 respectively.

I Classification of Combi ial matrices'eigenvalues
l 0 Eigen Notions of signature
Symmetry class & Rank Nullity Examples Notes
J class| values
SMath Sphys Sphys-detail
z ¥y K K o+
elliptic
1 k -K K e Nondegenerate
k-1 K 0 no zero
) 1 k k k=2 ot eiéenvalues)
T.J < JK), hyperbolic
I -k 2- K oy FcV
or proportional
0 y
Gl:ne:ic ” ) B k k +.4+ 0
com 1:1? (jna £-0) P ) b p
matrices | P k -k -.-0 < .(K)
G or proportional
1 1 Degenerate | Nondegenerate
(zero sector
z 0 eigenvalues) is elliptic
1
1 k 1 1 +0..0 or proportional,
0-1) 1 k including P,
L]k -1 -1 -0..0
1 1
0
K K K Tt ! . Nondegenerate
D | K 0 or proportional (no zero elliptic
K -K -K - eigenvalues)
Isotropic 1
matrices
1 0
K
Fully
0) — 0 K 0 0 0..0 . o degenerate
K is the only & o
— example .(all zero
| eigenvalues)
The unmatrix — 0 0 0 0 _
U —
Ao Eigenvalue
a, Algebraic See [63,69]
Key . T for further explanation of
Ye Geometric multiplicities the notions in these notes
He Minimal

Figure 2:
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Classification of Combinatorial matrices by eigenspaces, with a shared K-basis of eigenvectors

1 1 1
-1
Isotropic I) L , 1 01f,.., 1 .
VK N Wk |
: : 1
i 0 ke
Eigenvalues 0
Geometric K — K
multiplicities 1
1
eig(1) = eig(I)
Eigenspaces |
RE = RX
1 1 1
-1 .
Generic G) 1 1 O || oo .
_ VK V2 . k K
. l
i 0 -k
Eigenvalues z y
Geolmfet‘rl.c 1 T p _ K
multiplicities 1 1
1 |
) ¢ig, (G) @ ¢ig, (G) = ¢ig(G)
Eigenspaces | |
R ela R = RX
Unmatrix U) -
Eigenvalues —
Geometric
multiplicities _
Eigenspaces 0 = ¢Cig(U)
1
Figure 3:
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B Boosting classifications using Order Theory

Spectral classification of Combinatorial matrices

Table presentation

0

G) D) U)

1-k) 0-k) 1-0) 1) 0)

K |-K |K2(2-K| k | -k 11| K]|-K|O 0

Figure 4:

Structures 7 and 8 Classificatory-table versus classificatory-key depictions are illustrated in Fig
4 for the current Article’s cumulative-K eigenspectral classifications. On the one hand, tables
can encode some simple patterns of coarse graining. On the other hand, the key diagram can
be considered to be a rooted tree, which is a subcase of poset [31, 39]. Rooted trees are not in
general preserved under quotients, but more general posets can accommodate these. In this way,
key diagrams are stronger when the objects under classification are sharply enough defined to have
meaningful quotients.

Remark 1 Fig 5 abstracts posets from the previous figure. Including the following illustrative

quotients. b) treating the signs as distinguishable but meaningless. ¢) Identifying equal signatures.
d) Both at once. b) still manages to be a rooted tree, while ¢) and d) exhibit cycles.
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Remark 2 Graphs underlying these posets are exhibited in rows 3 and 4. See [70] for an explanation
of the specific style of these presentations of graphs.

Remark 3 In Fig 6, we split into Combinatorial matrices with each individual value of K .
K = 0 forms a disjoint chain: involving objects not present for any subsequent K .

K = 1 is also particularly simple, since here the matrices are just numbers, and these support
just the one lone eigenspace.

K = 2,3 have extra scope for identifications. K = 3 is minimal for the generic case to have a
symmetry-degenerate eigenspace.

K = 4 is the minimum generic value including our quotienting considerations. With less quoti-
enting, K = 3 can play this role. This role corresponds to the totality of Combinatorial matrices

CMir being spectrally truncated, which is these matrices’ main spectral feature. The Author shall
eventually consider size 2 and 3 square matrices’ real Jordan normal forms, which are not afflicted
by any such truncation.

Remark 4 Underlying graphs for these quotients are provided in Figs 7 and 8. The underlying
homeomorph irreducibles are in row 4, cycle systems in row 5, and the homeomorph irreducibles of
the cycle systems themselves in row 6. For the first 2 graphs in 5’s homeomorph irreducibles, just
remove the non-encircled 1’s and 2’s. All are planar bar Fig 8 column 1 rows 3 to 6, by virtue of
the marked Ks 3 forbidden subgraph.

Remark 5 All the above planar graphs are furthermore upper-planar [28] posets.
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