Euler’s Bimedian-Length Theorem Generalized

to an Infinite Family of Eigenaxles between Equal-sized Wheels

Edward Anderson*

Abstract

We generalize Euler’s bimedian-length theorem. Where we take ‘bimedian’ to mean a line segment
between the midpoints of any opposite pair of separations of a 4-vertex configuration. Our program’s
generalization is from bimedians to whichever eigenstroke length for any N vertices in any dimension.
Where an eigenstroke length is the magnitude of any eigenclustering vector that is not just a separation.
And eigenclustering vector is a truer name for a relative Jacobi vector.

For equal masses on the vertices, the largest such generalization considered [45] generalizes Apollonius’
median-length theorem as well. Giving generically a 3-coefficient formula. Euler’s theorem is distinctive
however in having just 1 coefficient. The current Article’s narrower generalization is then to the other
eigenstrokes that also have just 1 . These consist of the ‘eigenaxles: eigenstokes between equal-sized
subsystems: the ‘wheels’. Every even N > 4 contributes precisely 1 new eigenaxle, irrespectively of
how the configuration is elsewhere eigenclustered.

The smallest eigenclusterings and their new eigenstrokes
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1 Introduction
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1.1 The Theorem

For a convex quadrilateral, this Theorem of Euler’s reads [3, 21, 23, 25, 33, 39, 52]
4n? = a® + V¥ + & + d° - & — f7. (1)

Consult Fig 2.0) notation for the sides and diagonals, which together comprise the separations. Also the
object being solved for is the Newton(—Euler-Gauss) [2, 3, 5, 7, 9, 25] length n . Meaning the length
between the midpoints of the 2 diagonals, as depicted in Subfig 0.u).

Furthermore, 3-cycles of this hold as well. For a convex quadrilateral, the other 2 cycles single out by
sign reversal an opposite-sides pair rather than the diagonals. Now solving instead for the lengths of the line
intervals I, m joining the midpoints of this pair; see Subfigs 0.s)-t).

For tetrahaedrons, the above 3 cycles continue to hold [3, 21, 39, 52]. Just now for 3 opposite-sides
pairs without any carrying diagonal connotations. For re-entrant quadrilaterals, sides and diagonals are
meaningful within each figure. And yet given just the vertex positions, any non-adjacent pair of separations
can be interpreted as the diagonals for some ‘joining of the dots’ (Subfig 1). The Theorem also holds in 1-d
as well, or in fact in any dimension. As established by reproving it in a dimension-irrelevant manner, such
as by a moments method [39].

Naming Remark 1 This Theorem is often referred to as ‘Euler’s quadrilateral theorem’ And is often
stated for convex quadrilaterals’ case w only. These are however a modern-day misnomer and an un-
necessary weakening. Indeed, Euler already knew that the result holds for arbitrary quadrilaterals and
tetrahaedra. Incorporating the result’s dimension-independence, Fuler’s 4-vertex theorem is thus a truer
name (Geometry). As is Fuler’s 3-simplex theorem (Geometry, Combinatorics and Topology). Or Fuler’s
4-body theorem (Physics and Dynamics).

Notational Remark 1 The 3-cycle of lengths solved for as per above are known as bimedians. In particular,

I, m, n are all standardly called bimedians for tetrahaedrons. Some sources ony use ‘bimedian’ [29] for a
convex quadrilateral’s [ and m . However, given Euler’s 3-cycle symmetry, and the consolidation of
the usefulness of the whole-cycle notion by the above theorem, we take the following stance. The theorem
enforces a whole 3-cycle notion of bimedian irrespective of dimension, being functionally a bimedian-length
theorem in this sense. The s, and wu labels exhibited in the Figure as an alternative 3-cycle index values
have the following origin. Particle Physics’ account of 4-external point Feynman diagrams [17].



Notational Remark 2 Let us next adopt weak Conway variables and notation, using
Length := length? .

With capital letters for each Length corresponding to the lower-case letters used for each length. These
render the above theorem linear:
AN = A+ B+ C+ D - FE - F. (2)

Variables of this kind continue to be useful in handling generalizations of this result [40, 41, 42, 44, 45, 46, 47)
and more widely in Geometry [35, 52, 50].

1.2 The smallest eigenclusterings

Definition 1 An N-vertex configuration’s eigenclustering vectors are LCs (linear combinations) of its
relative separation vectors that diagonalize its inertia quadric, alias total moment of inertia. The current
Article restricts itself entirely to the simplest and most Geometricaly natural case of equal-mass (EM)
vertices. Eigenclustering lengths are then the corresponding magnitudes. A nontrivial eigenclustering length,
alias stroke, is one that is not just a separation-length. ‘Eigenclustering vector’ is a truer name for what
are more widely termed relative Jacobi vectors [6, 15, 19, 22]; the alias relative Jacobi magnitude is more
occasionally used.

Definition 2 An eigenclustering network is a basis choice of eigenclustering vectors, with reference to how
these fit together but without reference to whether or how the vertices are labelled.

Remark 1 Each of an N-vertex system’s eigenclustering networks contains n := N — 1 LI (linearly
independent) eigenclustering vectors, and thus introduces n eigenclustering lengths. This n is the dimen-
sion of relative space [37, 30, 52]. And LI refers to relative space as well, rather than to the Euclidean space
that the vertices reside in.

Definition 3 An eigenstroke vector is our term for a nontrivial eigenclustering vector without reference to
any particular eigenclustering network it belongs to. For it is between 2 subsystem CoMs (centres of mass)
without any dependence on how these subsystems are eigenclustered. Or on how the rest of the full system is
eigenclustered. This is with reference to our stroke, and the 2 partitioning subsystems that it runs between,
in general forming but a larger subsystem of the full system at hand. Its corresponding magnitude is an
etgenstroke length.

Remark 2 This distinction between strokes and eigenstrokes is useful because some eigenclustering vectors
belong to multiple distinct eigenclustering networks. It also serves to pin the “eigen" descriptor on names
referring to an eigenclustering vector-or-length free from reference to any eigenclustering network. For which
using “eigenclustering” would either be ambiguous or require clunking up names with further words.

Example 3 N = 3 is minimum to have a nontrivial eigenclustering length. Its stroke is the triangle’s
median; see Fig 1.a).

Examples 4. K and .H N = 4 is minimum to have an eigenclustering network ambiguity: H wversus K
as per Subfigs b) and ¢). The H has a single stroke: the crossbar whose 3-cycle-invariant Geometrical name
is, as abovementioned, the bimedian. While the K is the minimum eigenclustering network to contain 2
strokes: the slanty parts of the letter. Furthermore, the first of these is just the median of the 3-subsystem
picked out, in which sense it is not a new stroke. This ambiguity, multiplicity of strokes in an eigenclustering,
with however only 1 new stroke per N , are subsequently persistent.

Example 5 The minimum example in which the same stroke occurs in 2 different eigenclusterings is
provided by N = 5 . Here the last stroke of K(5) and of H(5) both run from the CoM of the same
tetrahaedron subsystem to the remaining vertex. See Fig 2.d) and f) for this coincidence for the next-smallest
handle eigenstroke. N = 5 ’s remaining ‘middling’ eigenclustering M(5) provides a different eigenstroke:
the turntable in Subfig e).

1.3 The arena of generalization

Structure 1 The eigenclustering networks are in 1 : 1 correspondence with [22, 43] the unlabelled rooted
binary trees (URBT) [12, 20, 24, 34, 27, 28].



The number of eigenclustering networks [22, 43] (free from any vertex-labelling ambiguities) is the corre-
sponding Wedderburn—FEtherington number 8, 10, 14, 18, 49] w(N) . This is established by a straightforward
isomorphism between eigenclustering networks on N vertices and the URBT on 2N — 1 . In which the
end-nodes are the eigenclustering’s vertices, and the internal nodes are all the CoMs that serve as junctures
in the eigenclustering network. The total CoM included, which serves furthermore as the root. The URBT
are in turn well-known to count out as the Wedderburn—Etherington numbers.

The URBT furthermore provide useful nomenclature for eigenclustering networks, in particular the left and
right child about each internal node.

Structure 2 The at-most binary (AMB) presentation results from once defoliating the corresponding binary
tree. In the eigenclustering applications, this involves removing all the primary vertices. while retaining all
of the nontrivial CoMs used. These are rather smaller trees, now of order 2N — 1 — N = N —1 =n

Naming Remark 2 AMB is most useful in naming eigenclusterings (and, intermediately, binary trees as
well). For being rather smaller as per above, they have already been more widely and recognizably named.
N = 3 is Py, K is Pg-straight and H is Pjs-bent. Where straight and bent means rooted at an
end-point, and the interior point respectively. Ps mneeds no bending descriptor since its 2 vertices are
equivalent. K(N) is P,-straight, H(5) is Claw , and M(5) is Py-bent.

1.4 The generalized result
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A given eigenclustering network on N vertices contains r separations and k = n — r strokes. The

moments method of proof [31, 36, 39, 40, 41, 42, 45, 44, 46, 47] then returns the following. A —in weak Conway
variable linear — equation for the reduced-mass-weighted LC of stroke lengths in terms of the separations.
This is already a solution for N = 3 and the H, returning Apollonius’ median-length theorem and
Euler’s bimedian-length theorem respectively. In all other nontrivial cases, we have an under-determined
linear system: 1 equation in k& > 1 unknowns. These are the corresponding ELETs: eigenclustering
Length-exchange theorems.

However, we can keep on applying the moments method to the right and left children. Resulting in &
linear equations in the k& unknowns: well-determined. These are the corresponding FLESSs: eigenclustering
Length-exchange systems

The general solution for all ELESs was given in [47]. By using eigenstroke independence from how the rest of
the configuration is eigenclustered. And how [46] had already solved the K(N) generalizations of K , whose



AMB aliases are the straight n-paths. This was given for arbitrary-mass (AM) vertices as the Solved-for
ELTs (eigenstroke-length theorems). With the EM subcase, that the current Article requires, picked out as
a Corollary. This takes the following form.

Corollary 1: Solved form for EMELT [32, 47] For EM, the schematic form simplifies to the ¢ 3-coefficient
formula’:

1 = M 1 Nu
_ I_1 Igl
T =y 2 2 Bt > gs X R (3)
=11, =1 H=7 Iy, Iy = 1
In < Ju

Remark 3 The above Corollary generalizes Apollonius’s median-length theorem [1, 16, 26] to an explicit
formula for the following. The Length T of the last eigenstroke! for any EM N-vertex configuration.
Between the left child and the right child, which are the 2 self subsystems. The mutual separations are
then between the left and right child subsystems. Also, the R are the separation lengths. N_ is the order
of the left child and N is the order of the right child. The 3 coefficients are

N:"' and (N_N;)™'. (4)
Remark 4 This is of the conceptual form
1 1 1
T = R™ — R*- — R . 5
N- N+ m%al N-2 s§ N+2 s§ ( )
- +
Remark 5 The corresponding integer-coefficients form is
N_ Ny Ny
NNAT = NoNg Yoy RN — M Ng? Y Rl (6)
I_ =11, =1 H=r7 I Ju = 1
In < Ju

Where H takes the value that H does not.

Remark 6 For a size P subsystem, just work within this subsystem with P in place of N and obtain
its last eigenstroke’ length.

Remark 7 Euler’s bimedian-length theorem arises in the H eigenclustering, which extends to form a chain
family with 1 H(N) per N . Our generalization, however, involves instead
N_ = N+ : (7)

dividing the vertices into 2 equal-order parts. Denoting their common value as P , all the coefficients
conflate:
N:? = 4P = N_N, . (8)

So (7) is the 1-coefficient condition. One ready consequence is that
N = N_ + N = 2P, (9)

so N is forced to be even.

In our generalization, the turntable between two partitioning subsystems is the eigenaxle between same-sized
wheels. In the sense of equal numbers of vertices, of total mass, or of self edges.

Naming Remark 3 Equal-order parts is an input name for the current Article’s subcase, while 1-coefficient
ELT is an output name. A further name is Fulerian, due to its generalizing a property of Euler’s case.
Rendering all the excluded cases non-Fulerian.

1.5 Outline of the rest of the Article

Sec 2 reformulates the above Corollary in terms of separation indices. Sec 3 recasts Euler’s theorem in terms
of our conceptualization, as the simplest p = 1 example. Gives the minimum counterexample to the
H(N) giving just 1l-coefficient formulae. Provides the minimum new generalization of Euler’s theorem.
Includes the p = 3,ie. N = 8 ,case. As well as the N = 29 subfamily, alongside brief theoretical
justification of this subfamily and of its minimum member beyond Euler: the aforementioned N = 8 case.

LA truer name for stroke is eigen[transversal]. Where [transversal] [38, 52] is a projectively-dual notion comprising co-
transversals such as medians and transversals [4, 9] such as bimedians.



2 Separation-index notation

2.1 General case

Notational Remark 1 Denote the vertices by

AI,I 1 to N.

Split these into
A, I =1 to N_ and Ai:, I_. =1 to Ny.

With
N = N_ + N, . (10)

Ss, s =1 to (g)

The above vertex split partitions these into the following 3 pieces. The self parts

S., s =1 to (]\;_) and S;:, sy =1 to (Z\;+> .

And the mutual part

Also denote the separations by

My, m =1 to N_N,.
Remark 1 Let us check that the split of the separations counts out right:

#(mutual separations) + #(self separations) =

Ny Ny (Ng — 1)
N_N. + > (2> = N_N. + Y —
H=7F H=F
_ 2NNy + N2 4 Ny2 — (N_ + Nyg) _ (No + NP = (N_ + Ny)
= 5 = 5 =
- N N(N -1
Nf = % = (J;[) = #(separations) .

Structure 1 Interpreting the set of vertices paired with the set of separations as the vertex- and edge-sets
of a graph,
{AT; ST} = Ky, : complete graphs . (11)

{A;M} = Ky_,n, : complete bipartite graph . (12)

Remark 2 In separation-indexed variables, the current Article’s theorem takes the following solved form.

N7N+ NH(NQH—I)
1 1 .
e S S S 19
m =1 H:I SH:1

Or equivalently the following integer-coeflicients form.

N,N+ NH(N2H—1)
N2N2T = N_Ny > M, — > Ng2 Y s, (14)
m =1 H:IF SH:1



2.2 Equal-parts = 1-coefficient = Eulerian subcase
Notational Remark 2 Now
So
N = 2P.
I =1 to P.

sz = 1 to (]23>

m = 1 to P%.
Remark 3 The count simplifies as follows.

#(mutual separations) + #(self separations) =

) PN, P(P—-1) _ 2P(2P — 1) _
Pe + 2 <2> = P°+ 2 5 = > =
= W = (g) = #(separations) .

Structure 2 Restricting Structure 1 to our special case,

{AT;ST} = Kp : equal complete graphs .

{A;M} = Kpp : complete bipartite graph with equal parts .
Remark 4 By (7), the current Article’s Corollary then takes the following solving form.

p2 w
1 H
X=p| X Mo 3 > S
m =1 H=F sp=1
Or equivalently, the following integer-coefficients form.
p2 %
P Y o Yy s,

m =1 H = F SH = 1

(19)

(20)



3 The smallest examples with discussion and pointers

The 2 smallest new examples of Eulerian eigenaxles

N=6 N =28
a) b) c) d) Are equivalent eigenclusterings
i) ii)
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Figure 4:
Example A p = 1 and thus N = 4 returns Euler’s bimedian-length theorem, now formulated as
follows.
4 1
AX = Y M, - > > s, (21)
m=1 H=Fsg=1
Conceptually revealing intermediaries in passing between this and (2) are
4X:]\/11+M2+M3+]u'4—57—5+. (22)
And in 2-d ,
4X = A + Ay + A3 + Ay — D1 — Do (23)

Le. the 2 parts are the 2 diagonals, which also comprise the 2 self contributions supported. While the

mutual contributions’ bipartite graph is
Ky 2 = Cy, (24)

which 4-cycle forms the quadrilateral’s sides.

Example B p = 2 and thus N = 6 provides the smallest example of a Eulerian eigenstroke length.

Here,
9 3
9X = Y M, - > > s, (25)

m =1 H=Fsg=1

So there are 2 x 3 = 6 self terms.

Aside 1 [44] obtained a 2-coefficient formula for the K(N) including Apollonius’ median-length theorem.
This arises from the n|1 partition returning
n 2, ntx 17t = 7t 17t x 17t = 1.

But also the single-vertex supports no separations, by which the 1 coefficient is wiped out as well. So in
effect

w.lo.g. N_ = n isthe 2-coefficient condition, (26)
with coefficients
n~2 and nt. (27)
Yielding the solved form
n(n —1)
1 < 1
m =1 =1



Or equivalently the integer-coefficients form

n?20 = n Z M, — Z S; . (29)

Where we use O rather than T to mark that all of these eigenstrokes are specifically cotransversals.

2-coefficients is the ‘Apollonian’ case: most closely matching Apollonius’ theorem. Which follows from the
regularity of K(N) that is aptly summarized by its P,-straight AMB name. ‘Apollonian’ and ‘Eulerian’
exhaust the ways in which an eigenstroke length formula can have < 3 coefficients. There is just 1
‘Apollonian’ and 0 or 1 ‘Eulerian’ case per N > 3 . While the 3-coefficient cases grow unboundedly
with N . Thus we term this last case of the tripartition by number of coefficients generic; also see the end
summary in Fig 5.

Counterexample B H(5)’s last stroke has not 1 but 3 coefficients. Using Fig 1’s notation,

E F H 1 A B D
T + + G + + 1+ J + +C’_7. (30)
6 9 4
Or in integer-coefficient polynomial form,
36T =6(E+ F+G+H+1+J)—-—4A+B+C)—-9D. (31)

This is the minimum generic example.

Example C p = 3 and thus N = 8 yields

16 6
16X = > My — > > S7,,. (32)

m =1 H=Fsg=1

So there are now 2 x 6 = 12 self terms.

This case is theoretically interesting since it has 3 eigenclustering wirings (Subfigs 4.b-d). And not 4 , due
to eigenclustering networks being left- and right-child ( F ) inistiguishability. By which for us Subfigs 4.d).i)-
ii) are of the same eigenclustering. Equivalently, F are distinct but meaningless labels for eigenclustering,

just as spin up and spin down are in Quantum Theory. Due to this subtlety [43], eigenclustering network
counts turn out to be Wedderburn-Etherington numbers rather than half-Catalan numbers [48]. With
N = 8 being the minimum counterexample to these being the same. By a count discrepancy of precisely
1, as covered by the above discussion of Subfig d).

Example D and Pointer 1 The N = 29 series, corresponding to P = 29 for ¢ := Q — 1 ,isof
further theoretical interest due to supporting special symmetry properties and minimum counterexamples.
See [51] for more about this.

Euler’s bimedian-length theorem and Example 3 are the first 2 members of this subseries. For the arbitrary
member of this subseries, the current Article’s Corollary’s solved form becomes

224 2q—1(2q 71)
X = 2724 Z M,, — Z Z sH. | . (33)
m =1 H = sg =1

Equivalently its integer-coefficients form is

22q 2(171(2071)
29X = > My — Y > SH_ . . (34)
m =1 H=F sg =1

So in this case there are 229 — 27 gelf terms.

Pointer 2 A further application of the current Article shall be announced within a few days, to considerable
fanfare.



Case Number of coefficients Condition Count
Eulerian 1 N. = N, , only attainable for N even 1 case pereven N
Apollonius 2 w.lo.g. N.=n 1 case per N
Generic 3 otherwise all other cases
Figure 5:
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