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Abstract

In the current Series, we use a ‘physical’ moments method to derive a family of N-simplex general-
izations of Stewart’s Cevian-Length Theorem for triangles. Namely, the Arbitrary-Mass Eigenclustering
Length-Exchange Theorems (AMELETS).

In the current Article, we contemplate the K(IV)-eigenclusterings. Which generalize the 4-Body Prob-
lem’s Jacobi-K eigenclustering. And correspond to the straight n-path graphs in the at-most binary
tree representation. This case’s nice series regularity readily permits a general solution for the individual
eigenclustering lengths in terms of the sides. And a homogeneous-coordinate unification of Article I’s
split multi-linear formulation.
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1 Solving for each stroke in each K(N)

Remark 1 As explained in Article I [17], our underlying principle [10, 13] is to equate 2 different expressions
for the inertia quadric,
lsep = LlEig - (1)

Where the second expression is for a specific choice of eigenclustering network [4, 6, 8, 12, 9, 19]. The
current Article contemplates the K(N)-eigenclusterings; see [16] for this notion and corresponding notation.
Which form the infinite series of paths P,-straight for n := N — 1 in the at-most binary (AMB) tree
representation [15, 17]. In this setting, our principle yields the following for the (length)? of a linear
combination of K(N) ’s strokes Op . Thus generalizing [14)’s result from equal to arbitrary masses.

Theorem 0 ( K(N)-AMELET)
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Where My is the mass of the k-vertex subsystem picked out by the K(NV) eigenclustering.

Remark 2 We next observe that K(P + 1)-AMELET — K(P)-AMELET isolates the (length)? of
the (p — 1)th stroke.
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So cancelling off the arbitrary Ap and the consecutive-subsystem mass ratio 11\\/1/[” ,
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Thus passing to mass-fraction variables
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we have arrived at the following generalization of [16]’s equal-masses result.



Theorem 1 (Explicit solution for each stroke-length in K(IN)). d) Redundant mass-ratio form.
Op 1= Y, &Avp — > §udur Auur - (3)

V € Sys(p) U, U’ € Sys(p)

Remark 3 The K(P)-AMELET is introduced by hand above. However, Article I’s splitting phenomenon
argument transcends from K to K(N), N > 4 . By which the K(P)-AMELET also arises intrinsically
to the K(P 4+ 1)-AMELET itself. From the presence of an irrelevant ratio that the answer cannot possibly
depend on, splitting this equation into 2 pieces.

Remark 4 Also we only need 2 equations to solve for each stroke. This is as opposed to having a system

of n — 1 equationsin n — 1 unknowns. And amounts to a ‘Markovian’ decoupling: for each new stroke
length, the only prior information we need to remember is the previous stroke-length.

2 Multi-linear formulations

Split multi-linear formulation of K(N)-eigenclustering generalization of Stewart's Theorem, for length of the (p - 1)th stroke

a) General case

b) N = 5 is minimum to exhibit a generic bitensor
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Figure 1:

Remark 1 We first continue Article 1’s approach with the split multi-linear algebra form of Fig 1. N = 5
is minimum for a (2, 1)-bitensor to manifest in the role of C . Corresponding to all subsequent members
of the series starting with Article 1’s half-transpositor and half-permanentor being pencil-shaped. Meaning
with 2 equal shorter directions and 1 longer one. We depict the shorter one in emerald for ‘excluded
subsystem’ and the longer one in indigo for included subsystem.

There are
(g) indigos but only P emeralds .

So equating these, we obtain
P(P—-3)=0.

Thus
P =0 or 3.



So P > 4 supports no further such coincidences. This translates to the pencil-shaped (2, 1)-bitensors
being persistently realized VN > 5

Unified multi-linear formulation of K(/V)-eigenclustering generalization of Stewart's Theorem, for the length of the (p - 1)th stroke
2) General case b) N = 3: form f) of Stewart's Theorem c) N = 4: the miniumum pencil
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Remark 2 The ¢; are ratio variables. Thus a homogeneous-coordinate representation formed by adjoining

1 to the vector of these is also very natural (and Projectively-significant). This technique dates back to
Mébius [3], and is discussed in e.g. [7]. It unifies the multi-linear algebra of the K(NN)-AMELET generaliza-
tion of Stewart’s Theorem in the sense of Fig 2. L.e. there is no longer any distinction between terms linear
and quadratic in the & . Albeit included-or-excluded retains an imprint at the level of the signs entering
the corresponding (2, 1)-bitensor.

Viewed in this way, the nth case is closely akin to the quadratic part of the split presentation of the Nth
case. So for instance, it isnow N = 3 ’s Stewart’s Theorem that involves a 3-tensor ‘permanentor’. Albeit
modulo 2 signs (Subfig b). Yielding a further form f) for Stewart’s Theorem [see Article I for forms 0) to
e)]. And it isnow N = 4 is now minimum to exhibit pencil-shaped (2, 1)-bitensors (Subfig c).



Pointer 1 Let us leave the following to Article ITI. How this unified multi-linearization relates to Article I's
H-AMELET that generalizes Euler’s 4-Body Theorem [2, 11, 19]. And conceptual analysis of, and thus a
name for, C
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