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Abstract
In the current Series, we use a ‘physical’ moments method to derive a family of N -simplex general-

izations of Stewart’s Cevian-Length Theorem for triangles. Namely, the Arbitrary-Mass Eigenclustering
Length-Exchange Theorems (AMELETs).

In the current Article, we contemplate the K(N)-eigenclusterings. Which generalize the 4-Body Prob-
lem’s Jacobi-K eigenclustering. And correspond to the straight n-path graphs in the at-most binary
tree representation. This case’s nice series regularity readily permits a general solution for the individual
eigenclustering lengths in terms of the sides. And a homogeneous-coordinate unification of Article I’s
split multi-linear formulation.
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1 Solving for each stroke in each K(N)
Remark 1 As explained in Article I [17], our underlying principle [10, 13] is to equate 2 different expressions
for the inertia quadric,

ιSep = ιEig . (1)

Where the second expression is for a specific choice of eigenclustering network [4, 6, 8, 12, 9, 19]. The
current Article contemplates the K(N)-eigenclusterings; see [16] for this notion and corresponding notation.
Which form the infinite series of paths Pn-straight for n := N − 1 in the at-most binary (AMB) tree
representation [15, 17]. In this setting, our principle yields the following for the ( length )2 of a linear
combination of K(N) ’s strokes Ok . Thus generalizing [14]’s result from equal to arbitrary masses.

Theorem 0 ( K(N)-AMELET)
n∑

j = 1

Mj

Mj + 1
Oj − 1 = 1

M

N∑
I, J = 1

I < J

I J rIJ 2 . (2)

Where Mk is the mass of the k-vertex subsystem picked out by the K(N) eigenclustering.

Remark 2 We next observe that K( P + 1 )-AMELET − K(P )-AMELET isolates the ( length )2 of
the ( p − 1 )th stroke.

Via
Mp

MP
AP Op − 1 =

∑
V ∈ sys(p)

AV AV +
(

1
MP

− 1
Mp

) ∑
U, U′ ∈ sys(p)

AUAU′ AU

=
∑

V ∈ sys(p)

AV AV −
(

AP

MP Mp

) ∑
U ∈ sys(p)

AUAU′ AU .

So cancelling off the arbitrary AP and the consecutive-subsystem mass ratio Mp

MP
,

Op − 1 = 1
Mp

∑
V ∈ sys(p)

AV AVP − 1
Mp

2

∑
U, U′ ∈ sys(p)

AUAU′ AU .

Thus passing to mass-fraction variables
ξI := AI

Mp
,

we have arrived at the following generalization of [16]’s equal-masses result.
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Theorem 1 (Explicit solution for each stroke-length in K(N)). d) Redundant mass-ratio form.
Op − 1 =

∑
V ∈ sys(p)

ξV AVP −
∑

U, U′ ∈ sys(p)

ξUξU′ AUU′ . (3)

Remark 3 The K(P )-AMELET is introduced by hand above. However, Article I’s splitting phenomenon
argument transcends from K to K(N) , N ≥ 4 . By which the K(P )-AMELET also arises intrinsically
to the K(P + 1)-AMELET itself. From the presence of an irrelevant ratio that the answer cannot possibly
depend on, splitting this equation into 2 pieces.

Remark 4 Also we only need 2 equations to solve for each stroke. This is as opposed to having a system
of n − 1 equations in n − 1 unknowns. And amounts to a ‘Markovian’ decoupling: for each new stroke
length, the only prior information we need to remember is the previous stroke-length.

2 Multi-linear formulations

l

Figure 1:

Remark 1 We first continue Article 1’s approach with the split multi-linear algebra form of Fig 1. N = 5
is minimum for a ( 2, 1 )-bitensor to manifest in the role of C . Corresponding to all subsequent members
of the series starting with Article 1’s half-transpositor and half-permanentor being pencil-shaped. Meaning
with 2 equal shorter directions and 1 longer one. We depict the shorter one in emerald for ‘excluded
subsystem’ and the longer one in indigo for included subsystem.

There are (
P
2

)
indigos but only P emeralds .

So equating these, we obtain
P ( P − 3 ) = 0 .

Thus
P = 0 or 3 .
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So P ≥ 4 supports no further such coincidences. This translates to the pencil-shaped ( 2, 1 )-bitensors
being persistently realized ∀ N ≥ 5 .

l

Figure 2:

Remark 2 The ξi are ratio variables. Thus a homogeneous-coordinate representation formed by adjoining
1 to the vector of these is also very natural (and Projectively-significant). This technique dates back to

Möbius [3], and is discussed in e.g. [7]. It unifies the multi-linear algebra of the K(N)-AMELET generaliza-
tion of Stewart’s Theorem in the sense of Fig 2. I.e. there is no longer any distinction between terms linear
and quadratic in the ξi . Albeit included-or-excluded retains an imprint at the level of the signs entering
the corresponding ( 2, 1 )-bitensor.

Viewed in this way, the nth case is closely akin to the quadratic part of the split presentation of the Nth
case. So for instance, it is now N = 3 ’s Stewart’s Theorem that involves a 3-tensor ‘permanentor’. Albeit
modulo 2 signs (Subfig b). Yielding a further form f) for Stewart’s Theorem [see Article I for forms 0) to
e)]. And it is now N = 4 is now minimum to exhibit pencil-shaped ( 2, 1 )-bitensors (Subfig c).
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Pointer 1 Let us leave the following to Article III. How this unified multi-linearization relates to Article I’s
H-AMELET that generalizes Euler’s 4-Body Theorem [2, 11, 19]. And conceptual analysis of, and thus a

name for, C .
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