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Abstract
We have found a set of N -body problem Theorems, or alternatively for N -simplex configurations.

Each is for a weighted sum of squares of those eigenclustering ( = relative Jacobi) magnitudes which are
not already (Lagrange) relative separations in terms of those which are. By which these are Eigenclus-
tering Length-Exchange Theorems (ELETs). In the current Series, we restrict ourselves to equal-mass
such, with reference to placing masses at the vertices; this is the most Geometrically-natural case. So we
are more specifically considering EMELETs.

Eigenclustering networks become ambiguous for N ≥ 4 . In fact, these are unlabelled rooted bi-
nary tree (URBT)-valued. Though for the purpose of systematically naming our Theorems, it is more
convenient to defoliate these once. Thus passing to the unlabelled rooted AMB trees: at-most binary.

Then the minimum nontrivial N = 3 EMELET returns Apollonius’ Theorem for the median length
in terms of sides data as the 2-path P2 case. While the P3-bent- (alias 4-body H-)EMELET returns
Euler’s 4-Body Theorem for the Newton length in terms of separations data. In the current article, we
show that trees smaller than P2 do not contribute any ELETs. And, more substantially, we provide
the explicit form of the EMELET for all straight Pn , n ≥ 2 . Where n := N − 1 .
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1 Introduction
We recently gave new proofs [26, 29] of Apollonius’ Theorem [1, 9, 18, 33] and Euler’s 4-Body Theorem
[3, 12, 13, 16, 17, 23] These use just centre of mass (CoM) and moment of inertia (MoI) concepts: first and
second moments. By which they readily generalize to give corresponding Theorems for each eigenclustering
network supported by each N -body problem in arbitrary dimension. For a weighted sum of squares of those
eigenclustering magnitudes which are not already relative separations in terms of those which are.

Eigenclustering networks [32, 33] are more widely known as types of Jacobi coordinate system [8, 10, 11, 14].
In Sec 2, we set up separation coordinates and then the particular choice of eigenclustering coordinates
that we require. Apollonius’ Theorem in its original context is for a triangle: how to compute the length
of a median from sides data. Via e.g. our proof, this generalizes to being a 3-body problem result, thus
in particular holding in 1-d as well. The 3-body problem supports just the one eigenclustering network.
While the most well-known subcase of Euler’s 4-Body Theorem – Euler’s Quadrilateral Theorem – is for the
Newton length [2, 5, 6, 7, 17, 19] between the midpoints of the diagonals, in terms of separations data. Via
e.g. our proof,1 this generalizes to being a 4-body problem result, thus holding in 1- and 3-d as well. It
corresponds to the H-eigenclustering network for the 4-body problem, wherein one alternative is supported:
the K-eigenclustering network.

In this manner, our Theorems are Eigenclustering Length-Exchange Theorems (ELETs). More specifically,
the current Series considers EMELETs. With reference to placing equal masses at the vertices, which is the
most Geometrically-natural modelling situation.

Eigenclustering networks moreover correspond to [14, 32] the unlabelled rooted binary trees (URBT) [24].
We subsequently index eigenclustering networks, and thus our Theorems, by the corresponding trees. We

1This is not the only way of obtaining this generalization, however; see e.g. [12].
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explained this correspondence in Article I. As well as how it is more convenient to use the corresponding
AMB trees – at most binary – that result from defoliating the URBT. See [32] for many further details about
this.

From this point of view, the 3-body problem’s eigenclustering network corresponds to the 2-path tree
P2. And the 4-body problem’s H versus K eigenclustering-network ambiguity corresponds to the bent

versus straight P3 rooting ambiguity. See Fig 1. These respectively support Apollonius’ Theorem as the
3-EMELET. Euler’s 4-Body Theorem as the H-EMELET. And the corresponding K-EMELET unveiled

in [30].

We explain in Sec 3 how the space of nontrivial ELETs is a slight truncation of the URBT, with the Apollonius
P2 as its bottom element. We then present our new straight n-path Theorem in Sec 4. For N ≥ 5 ,

this corresponds to the K(N)-eigenclustering generalization of N = 4 ’s K-eigenclustering. In Sec 5 we
check that this recovers Apollonius’ Theorem ( P2 case) and my Jacobi-K Theorem ( P3-straight case). And
then finally give the explicit form for the next smallest case: the P4-straight eigenclustering for the 5-body
problem. This eigenclustering is displayed in the last row of Fig 1.

2 Eigenclustering coordinates and their masses
2.1 Position and separation levels of structure
Structure 0 We denote the position vectors of our model’s points-or-particles by qI , I = 1 to N .

Structure 1 We denote the (Lagrange) (relative) separation vectors between them by rI J , J ≥ I . We
also re-index these 2-index combinations by the following single index.

S = 1 to
(

N
2

)
= N ( N − 1 )

2 = dim( separation space [27] ) . (1)

We also use sS to denote the corresponding magnitudes: the separations themselves. For a particular planar
convex Geometrical figure’s realization, separations can be subdivided as follows. Into sides aI = sI ,
I = 1 to N . And diagonals dD . With index

D = 1 to N ( N − 1 )
2 − N = N ( N − 3 )

2 ; (2)

see Fig 1.a) for the first few instances. Thereby, the first N SS have ‘dual nationality’ as sides.

Structure 1′ With the r not all being LI for N ≥ 3 , we introduce some relative space basis for them
that we denote by r̃i . With

i = 1 to n := N − 1 = dim( relative space [27] ) .

Remark 1 For N ≥ 3 , the inertia quadric is not however diagonal with respect to such a basis [27]. To
acquire this property, we pass to the following.

2.2 Eigenclustering vectors, alias relative Jacobi vectors
Structure 1′′ Eigenclustering vectors [27], alias relative Jacobi vectors [4, 8, 11, 20, 33] are an alternative
basis for the relative space information that is diagonalizing. We present this here in the case in which the
underlying point-or-particle masses are equal.

Examples 0 to 2 For N ≤ 2 , the eigenclustering concept is unnecessary.

Example 3 For N = 3 , they are uniquely specified up to 3 relabellings. Fixed by which side we choose
to be the base of the triangle.
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Figure 1:

Example 4 For N ≥ 4 , there are further eigenclustering network ambiguities. Starting with the H versus
K ambiguity for the 4-body problem. Which corresponds to the bent versus straight P3 rooting ambiguity.
Indeed, the possible eigenclustering networks for the N -body problem correspond to the unlabelled trees on
N vertices. In the current Article, we consider the Pn-straight alias K(N) the 4-body problem’s P3

alias K . Fig 1 illustrates this and the previous Subsection’s main notions up to N = 5 .

2.3 Straight-path eigenclusterings
Remark 1 For our path choice, each N extends the preceding N ’s eigenbasis by one eigenvector. From the
total CoM so far ( X , T , Q , P... in Fig 1) to the extra point-or-particle. Thereby, one can immediately
write down the general Nth case (Fig 2.a).

Structure 2 Every eigenclustering network contains ≥ 1 relative separation. For path eigenclusterings,
it is precisely 1 . Eigenclustering line segments which are not separations are some kind of [transversal].
This is a term introduced in [28] to cover both co-transversals such as medians and transversals such as
the Newton line in the H case. See Fig 2.a) for explicit formula for the Pn-straight cases’ eigenclustering
vectors.

Naming Remark 1 Instead of naming individual transversals as we did in [29, 30] for H and K respec-
tively, we now just label them by their edges along Pn-straight. Edge 1 is the 2-body separation. Edge 2
extends this to a 3-body eigenclustering basis, and so on. See Fig 1.b).
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Figure 2:

Notational Remark 1 For path eigenclusterings, the corresponding edge-labelled [transversal] length vari-
ables are

t2 , t3 , ... , tn . (3)

Thus the path-eigenclustering [transversal] subspace of relative space has the following dimension.

n − 1 = N − 2 .

Let us also use
T2 , ... , Tn (4)

to denote their squares.

2.4 Eigenclustering masses and the ‘Greek world’
Structure 1 Eigenclustering masses are a subcase of reduced masses. We compute these in Fig 2.b) for
N = 2 to 5 . The general case for this is obvious as well. Observe that equal particle masses does not

guarantee equal reduced masses, eigenclustering masses included.

Notational Remark 2 Eigenclustring masses lead to corresponding mass-scaled length variables [27]. Let
us use Greek letter versions of symbols to denote mass-weighted counterparts. Chief among these in the
current Article is ι , which, unadorned, stands for total moment of inertia. With indices, this stands for
the corresponding partial moments. Though we use furthermore α corresponding to side a and τ t̄ for
those corresponding to [transversals] tt̄ .

Notational Remark 3 Finally let us use Op to denote the sum of the pth powers of the objects O .
[21, 26, 25, 29, 30] benefited from many simplifications from sequential use of squared variables and power
sums. This usefulness largely recurs in the current Article.
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3 How our result trivializes for N ≤ 2: the 3 smallest binary
trees

Remark 1 The system of equations that our Theorem follows from consists of the following.

1) The MoI ι’s partial moments expansion in our eigenclustering basis,

ι =
n∑

i = 1
ιi =: ι1 . (5)

2) And the separations-democratic radius of gyration (RoG) formula [27]: an equable expansion in the
separations. Which, in the equal-masses case used in the current Series, is

( RoG )2 := R = 1
N2

N∑
I, J = 1

I < J

∣∣∣∣rI J
∣∣∣∣2

. (6)

By Sec 2, these expansions contain
n := N − 1 (7)

and
N ( N − 1 )

2 (8)

terms respectively. We are to solve our system for the [transversal] lengths. For our Theorem is a device
from computing some (perhaps weighted) sum of such lengths squared in terms of purely separation-length
data. This fits the bill: firstly, a truer name is Apollonius’ Median-Length Theorem [26]. Secondly, Euler’s
4-Body Theorem can be taken to compute the length of the Newton line segment [29].

Question 1 So what happens for the cases even smaller than Apollonius’ Theorem?

Example 2 For the 2-body problem, there is just the 1 separation and no [transversals]. At the level of
counting,

2 ( 2 − 1 )
2 = 1 = 2 − 1 .

So both expansions become trivial, in the sense that there is only 1 piece in each. And our system of
equations degenerates to 2 copies of the same identity equation,

ι = α . (9)

And this is fine, since there are also no [transversals] to solve for in this case!

The 2-body problem is thus too simple to have an Eigenclustering Length-Exchange Theorem. This case is
indexed by the

pt = D1 = P1 AMB tree .

Which are respectively, its single-point point-cloud notation, its totally-disconnected graph notation and its
1-path reconceptualiation.

Example 1 For the 1-body problem, there are no separations or [transversals]. Indeed now both counts
return 0 . This means that both of our expansions contain no terms. Our system has thus again degenerated
to 2 copies of the same equation, which is now furthermore a zero equation:

ι = 0 . (10)

And this is fine, since there are no [transversals] at all to solve for in this case! So now the partial moments
expansion is even more trivial: it contains no partial moments.

This case is indexed by the same AMB tree as above. This corresponds to the only place where the binary-
to-AMB defoliation fails to give an isomorphism [32]. For, on the one hand, defoliating P3 -bent returns
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the point. But, on the other hand, defoliating the point also returns the point, because now the input tree
already has no leaves at all! Thus if discussing N = 1, 2 we need AMB labelling to distinguish between
the two. I.e. the P3-straight AMB tree versus the pt AMB tree.

Example 0 For the 0-body problem, there are no points-or-particles, let alone separations or [transversals].
Now neither a MoI nor a RoG exist. So there are no equations at all! And this is fine, since there are no
[transversals] to solve for in this case either... This case is indexed by

U : whichever of the unpoint, untree or unpath incarnations of ∅ . (11)

Structure 1 Our Theorems are thus indexed in more detail by
Tree2∗ − {U, D, P } . (12)

For Tree2∗ the arena of unlabelled rooted binary trees. On which restriction it is isomorphic to

Tree ≤ 2∗ − {U, D, P } . (13)

For Tree ≤ 2∗ the arena of unlabelled rooted AMB trees.

While the current article involves just
path − {U, D, P } =̃ N0 − { 0, 1, 2 } =̃ N . (14)

For path the arena of unlabelled paths. Thereby, Apollonius’s Theorem – as the P2 case – is, from an
Order-Theoretic [15, 24] point of view, the bottom element of our slightly truncated arenas of path and tree
graphs.

4 The Pn-straight Eigencluster [Transversal]-lengths2 Theorem
Theorem 1 [Anderson 2018]

a) (Mass-weighted rational form)

N

n∑
t̄ = 2

τ t̄ = 2 Σ1 − N α . (15)

b) (Geometrical [transversal]-lengths subject form)

2
n∑

t̄ = 2

t̄

t̄ + 1
Tt̄ = 2

N
S1 − A . (16)

Proof Our First Principle (A) is the partial MoI expansion of in H-coordinates.

Our Second Principle (B) is the separations-democratic RoG formula.

Squared variables and sum variables sequentially save us symbols.

Latin ←→ Greek ‘translations’ (inter-conversions) must always remember to (un)deploy eigenclustering
mw factors.

Everything else is in Fig 3.

Remark 1 In the Geometrical variables, the eigenclustering masses render placing the general case in
rational form unwieldy. This can however be done for each small example of interest ([30] and Sec 5).

Corollary 1 a)

N

n∑
t̄ = 2

τ t̄ = ( 2 − N )α + 2

N ( N − 1 )
2∑

S̄ = 2

ΣS̄ . (17)
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Figure 3:

b)
n∑

t̄ = 2

t̄

t̄ + 1
Tt̄ = 2 − N

2 N
A + 1

N

N ( N − 1 )
2∑

S̄ = 2

SS̄ (18)

Proof This follows from also splitting the second sum in Fig 2’s second column. And then cancelling contri-
butions from our two bases’ ‘dual nationality’ element, α 2 .

Remark 2 The Theorem’s statements benefit from brevity. But it is the Corollary’s forms that most directly
translate to a Linear-Algebraic formulation of the cycle of such results over all possible separations.

5 The first few nontrivial examples
Example 3

a) reads
3µα = α + 2

(
β + γ

)
. (19)

b) gives
MA = B + C − A

4 (20)

I.e.
ma

2 = b2 + c2 − a2

4 :

a standard form for Apollonius’ Theorem recovered. For ma the median corresponding to side a .
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Example 4 [30] recovered.

a) reads
2 (τ 1 + τ 2 ) = ι1 − α . (21)

b) reads
2
3 T1 + 3

4 T2 = 1
4 ( S1 − A ) . (22)

For which a rational form is
8 T1 + 9 T2 = 3 ( S1 − A ) . (23)

Or, in terms of the original Geometrical variables,
2
3 t1

2 + 3
4 t2

2 = 1
4

(
s2 − a2 )

. (24)

With rational form
8 t1

2 + 9 t2
2 = 3

(
s2 − a2 )

. (25)

Example 5 For P5 ,

a) reads
5 (τ 1 + τ 2 + τ 3 ) = 2 ι1 − 3α . (26)

b) reads
2
3 T1 + 3

4 T2 + 4
5 T3 = 1

10 ( 2 S1 − 3 A ) . (27)

For which a rational form is

40 T1 + 45 T2 + 48 T3 = 12 S1 − 18 A . (28)

Or, in terms of the original Geometrical variables,
2
3 t1

2 + 3
4 t2

2 + 4
5 t3

2 = 1
10

(
2 s2 − 3 a2 )

. (29)

With rational form
40 t1

2 + 45 t2
2 + 48 t3

2 = 12 S1 − 18 a2 . (30)

End Remark [31] go on to consider further eigenclusterings that are not straight paths.
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