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Abstract

We recently gave new proofs of Apollonius’ Theorem and Euler’s Quadrilateral Theorem that gener-
alize to all other eigenclustering networks for all N-body problems (in all dimensions). Eigenclustering
vectors are elsewhere called (relative) Jacobi vectors. Eigenclustering networks are in 1 : 1 correspon-
dence with the unlabelled rooted binary tree graphs. And, with 1 exception, to the at-most-binary
(AMB) trees, which are conveniently smaller. For such an FEigenclustering Length-Ezchange Theorem to
be nontrivial, one needs > 1 eigenclustering vector that is not just a side to exchange! N = 3 is
thus minimum, returning Apollonius’ Median-Length Theorem as the AMB convention’s smallest 2-path
case of our family of Theorems. While Euler’s Quadrilateral Theorem corresponds to the bent 3-path
encoding the H-eigenclustering.

We now provide the straight 3-path counterpart, that corresponds to the K -eigenclustering network.

In the H case, separations are supplemented by the Newton line segment, alias crossbar of the H
Whose length is a measure of aparallelogramness. In contrast, for the K , they are supplemented by
the spike and the handle of the K : its second and third strokes. These names arise from viewing the
K as an axe, with the 3-body subsystem it picks out in the role of blade. So on the one hand, Euler’s
Theorem gives the crossbar length in terms of the separations. On the other hand, our new Theorem
relates a sum of squares of the spike and the handle to the separations. Which is now a quantifier of
departure from the central binary coincidence.
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1 Introduction

In [24], we gave a new proof of Euler’s Quadrilateral Theorem [2, 9, 10, 12, 13, 19] Which renders it
clear that it is in fact a 4-body result (dimension independent). This proof is ‘Physically guaranteed to
generalize’. For it is built out of centre of mass (CoM) and moment of inertia (Mol) or radius-of-gyration
(RoG) considerations: first and second moments.

[24] argues furthermore that my slightly earlier new proof of [22] Apollonius’ Theorem [1, 7, 15, 29] is the
2-path Py version to [24]’s bent P3 version of a working that holds for the following. Any eigenclustering
network for any point-or-particle number N in any dimension d [27]. And for arbitrary masses. This is
the full extent to which I am aware that the above ‘Physically guaranteed to generalize’ applies.

Eigenclustering vectors are elsewhere alias (relative) Jacobi vectors. Eigenclustering networks are in 1 : 1
correspondence with [11, 27] the unlabelled rooted binary tree graphs [20]. And, with 1 exception, to the
at-most-binary (AMB) trees [25, 27]. Which are conveniently smaller and thus what we choose to label cases
by.

The only aspect of this that we use in the current Article is that the 4-body problem is minimum for
eigenclustering network ambiguity. Where the straight versus bent P3 ambiguity among AMB trees man-
ifests. Corresponding to, in hitherto much more widely used words, the Jacobi-K versus -H ambiguity
[3, 5, 8, 11, 16] at the level of the 4-Body Problem.

Euler’s 4-body Theorem can then be viewed as an H-eigenclustering result. Its eigenclustering length-
exchange is of the Newton line segment’s length for side length data. Where the Newton line segment runs
between the midpoints of the diagonals, by which its length is a quantifier of aparallelogramness (see Article
I and Fig 2). While Apollonius’ 3-body Theorem’s eigenclustering length-exchange is already manifest in
its truer name: Median-Length Theorem.

From this point on, the current Series shows what some further eigenclusterings yield instead. In the current
Article, the case that we consider is the 4-bodies’ K -eigenclustering network, which corresponds to Pgs-
straight . See Fig 1 for the 3 eigenclustering networks and trees mentioned in this Introduction. Sec 2
obtains what we need for the K -eigenclustering. Sec 3 then parallels [24]’s proof. Sec 4 summarizes this
project so far at the level of a comparative table of namings. Appendix A provides some supporting Linear
Algebra. [25, 26] subsequently provide further examples of such Theorems.

2 The K-eigenclustering

Structure 1 Consider the 4-body problem with equal masses. Here, the relative-separation-diagonalizing
relative Jacobi vectors [3, 5, 8, 16] alias eigenclustering vectors [23, 24] can be chosen to form the following
K-network [see also Fig 1.4.K)]. The @ are position coordinate vectors for our 4 points-or-particles.

edge Eg g - a*
spike R, = ¢ - % (GA + aB) "
handle Rh = D _ % ( 614 + qB + qc )

The corresponding eigenclustering masses (alias Jacobi masses and a subcase of reduced masses) are as
follows.

edge mass ;Tlg 141 2 = g 1
spike mass /Tlp = i+ = 3 = fy = 2 )
handle mass - 141 i = m 3
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Naming Remark 1 We name the K’s 3 strokes as follows. This is from the axe conceptualization that
Kneller and 1 exhibited in [14], as per Fig 1.b).! The edge is the leading face of the axe — one of the 6
separations supported by the 4-body’s 3-simplex configuration. The spike is the thickness co-transversal
[29] from the CoM of the edge to the third point-or-particle. Which 3-body subsystem constitutes the
blade of the axe. Finally, the handle is the co-transversal from the blade’s triple CoM T to the final
point-or-particle.

Notational Remark 1 Let us denote edge length, spike length and handle length by

g, p, h.

This reflects that e is already booked as standard notation for one of the 3-simplex’s 6 separations. While
s is already in play for the totality of separations. So g stands for ‘edge’, being the only free letter therein.
And p is the first free letter in ‘spike’.

Remark 1 So to the 3-simplex’s squared-length variables given in [24], we now add the following.

Definition 2 The (spike length )?
P = p?.

The (handle length )?
H = h?.

Of course, we call whichever (separation)? that we allot leading edge to the (edge length)?
G = ¢°.

Definition 3 The corresponding partial moments of inertia (Mol) are, in order along the K’s straight-Pg
edges,
lg, lp, lg.

Notational Remark 2 The 4-body problem supports

(9 -
() -

choices to complete the blade 3-subsystem. Then everything is fixed. So there are

choices of leading edge. And then

6 x 2 =12

possible labellings of K-coordinates.

Which we index by (ST). Or by (KST) if H’s are also in play. For S an index running over
separations. And T a 2-index.

IThough there we used ‘“face’, ‘thickness’ and ‘handle’.



3 K -Eigenclustering Length-Exchange Theorem

Theorem 1 [Anderson 2018] For p and h the spike and handle strokes of a K with the vertex separation
g = a as leading edge, the following hold.

a) (‘Euler—Jacobi—Jacobi-K”)
2(lp +lg) = —la + Ll + lc +lp + lg + Lp (3)

b) (‘Euler—Jacobi-K?’)

2 3 1
3P+ H=7(A+B+C+D+E+F). (4)

Proof The below refers to the method in Fig 2 of Article I.

Our First Principle is the partial Mol expansion of the Mol in K-coordinates. L.e.
[/:La—’—l/p-’—//h. (5)
Our Second Principle is the (separations! [23, 16]) democratic RoG formula (B) in Fig 2 of Article I.

a) Substitute the Greek (B) in (5), cancel terms and multiply by 2 .
b) Insert eq. (2)’s K-masses to return to the Latin world. O

Remark 1 This form of b) directly exhibits the K-masses involved (‘manifest eigenclustering masses form’).
Multiplying both sides by 2 casts the left-hand side in terms of the eigenclustering mass ratios.

Remark 2 b) can also be written more neatly as follows.

b’) (Rational form)
8P + 9H =3(-A+B+C+D+E+F). (6)

For all that this obscures that eigenclustering masses are in play.

Remark 3 In the original variables of the quadrilateral, we have the following.

c)

2 1

§p2+%h2:Z(—a2+b2+62+d2+62+f2). (7)
While the rational counterpart is as follows.
c’)

8p® + 9h* =3 (-a® +0® + F + d° + e + f?). (8)

Remark 4 In terms of the sum of separations,

a) reads
2(Ly + Lp) = by — Ly. (9)

b) reads

L L Fe) (10)

3 47t
b’) reads

8P + 9H = 3(S1 — G) (11)
c) reads

2 9 2 1 2

3P +*h21(52—9)- (12)
Finally, ¢’) reads

8p° + 9n% = 3 (s2 — ¢g°) (13)
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Remark 1 Names for the current Article’s Theorem are highlighted in yellow. The penultimate one is
explained in the Appendix.

Riddle 1 We leave what anuniformity may refer to as a riddle for the Reader (for Sphinxes are also Riddlers).

Remark 2 While [10] first envisaged the concept behind the name Aparallelogramness Theorem, this name
itself arose in discussions between Sénchez and I [18]. This is highlighted in red to mark the truest name
so far for the nicest theorem in the set. Some of its features are as follows. Since parallelograms have 4
vertices, in this case there is no need to say 4-body. There are also many ways in which the parallelogram
is more interesting than the other configurations which these Theorems quantify deviations from.

It should come as no surprise that the most interesting case, concurrently the one permitting the shortest
name, comes with Euler’s name attached. Elsewhere Euler founded Affine Geometry as an axiomatization
of Parallelism. And also founded the very Graph Theory that indexes our whole family of Theorems! We
bow to the master.
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v2, and ongoing related collaborations. And C, Malcolm MacCallum, Reza Tavakol, Jeremy Butterfield and
Enrique Alvarez for support with my career.

A Linear Algebra of the K-Eigenclustering Length-Exchange The-
orem

Remark 1 Theorem 1 - 4-Body K-Eigenclustering Length-Exchange Theorem alias everything in column
2 of Fig 2 — is a new result.

So we here re-run the Linear Algebra analysis that we had already conducted upon first mention for the
4-Body H-Eigenclustering Length-Exchange Theorem alias everything in Column 3 of Fig 2.

Structure 1 The K-eigenclustering matriz is

-1 1 1 1 1 1

T -1 1 1 1 1

1 1 -1 1 1 1
K=511 1 1 1 1 1 (14)

1 1 1 -1 1

1 1 1 1 1 -1

With this scaling,

K-K.3. (15)
For separation partial moments of inertia 6-vector X . And combined spike-and-handle inertia vector K

with components
Ks = lps + lgs = ppS2 + IOh,5‘2 (nosum ) . (16)

Remark 2 Observe that this construct does not use all K-eigenclusters at once. Rather, so as to obtain a
square and thus well-determined system, for each inter-vertex separation we pick precisely 1 K which has
this as its leading edge.
Structure 2 The corresponding spike-and-handle-squares 6—wvector is

2 3

K =-P -H .

3 + 4

For (spike length)? 6-vector P . And (handle length)? 6-vector H . Setting

K =20



then reveals our Theorem to be a quantifier of deviation from central binary collisions. Hence the penultimate
name in column 2 of Fig 2.

Remark 3 Its eigenvalues are 1 with multiplicity 1 and -2 with multiplicity 5 . Its rank is 6 , which is
the full rank supported, so the nullity is 0 . With reference to [21]’s conceptualization, its Mathematicians’
signature is 5 and its Physicists’ signature is 4 , and its Physicists’ signature-in-detail is — — — — — +
hyperbolic.

The corresponding eigenvectors can be taken to be

1 -1 -1 -1 -1 -1
1 1 0 0 0 0
1|1 1 |o 1|1 1 |o 1 |o 1 |o an
Gl vmlol o vmlol w1l vmlo] o v&lolf
1 0 0 0 1 0
1 0 0 0 0 1

The first is obligatory, while the remainder constitute a convenient pure-ellipticity [17] basis.
Remark 4 K is 6 x 6, and invertible as implied by the full rank that can be read off its eigenspectrum.

Remark 5 We did not present any eigentheory in [24] for the following reason. The H-cycle matrix just
returns the Heron matrix [6, 17] alias fundamental triangle matrix [21]. For which e.g. [21] already provided
such an analysis (eigenvalues and eigenvectors first appeared in [17]). [21] furthermore gave 6 technically
distinct routes to this matrix within the theory of triangles, 2 of which have 2 distinct conceptualizations;
see [28] for yet more. By which the name ‘Fundamental Triangle matrix’ is well justified.
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