
An infinite Series of Generalizations of
Apollonius’ Theorem

Edward Anderson∗

Abstract
Apollonius’ Theorem gives the length of a triangle’s median in terms of the lengths of its sides. We

generalize this to an infinite series of formulae for the lengths of the equal-masses N -simplex’s K(N)-
eigenclustering’s strokes. These simple formulae closely resemble Apollonius’ Theorem in form. Which
Theorem is indeed their first nontrivial member, corresponding to viewing the median as the first non-
side stroke of a K(N) eigenclustering. Eigenclustering vectors are alias relative Jacobi vectors. While
K(N) is the obvious N -body problem generalization of the 4-body problem’s K-eigenclustering, alias

Jacobi-K .
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1 Eigenclusterings
Remark 1 The N -simplex in some R

d supports (
N
2

)
separations between its verttex points. Of which only

n := N − 1

are linearly independent. The N -simplex can also be viewed as a Physical N -body problem’s N -particle
configuration in R

d . For N ≥ 3 , a choice of n relative separations does not diagonalize the inertia
quadric. But linear bases of eigenclustering vectors do. Eigenclustering vectors [32, 36] are alias relative
Jacobi vectors [9, 17, 20, 25]. While at the present level of reduction, the inertia quadric is equivalent to the
Euclidean metric on relative space [32, 44] in Physics-free terms.

l

Figure 1:

Example 1 N = 3 supports a single eigenclustering network: the T-shape of Fig 1.3.

Example 2 N = 4 exhibits a first eigenclustering network ambiguity. Namely, H- versus K-eigenclustering,
alias the Jacobi-H and -K ; see Fig 1.4.
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Remark 2 Such eigenclustering network ambiguities growingly persist for all subsequent N . More specif-
ically, the N -body problem supports w(N) eigenclustering networks, where w denotes the Wedderburn–
Etherington numbers [11, 13, 16, 19, 41]. This is since the eigenclustering networks are in 1 : 1 correspon-
dence with [25, 40] the unlabelled rooted binary trees [22, 27, 33, 40].

Example 3 Every N supports a generalized-K eigenclustering K(N) , formed by keeping on adding 1
point at a time to the growing network. This recursive construction corresponds to forming the straight-Pn

path in the AMB tree representation. Where AMB stands for at-most binary, which is a more efficient
representation than the binary version for our domain of interest, N ≥ 3 . Whereupon it is related to
[40] the somewhat larger binary tree representation by defoliation [33]. See Fig 1.5 for K(5) .

2 ELETs
Remark 1 For each N ≥ 3 , every eigenclustering network supports a nontrivial ELET. I.e. an Eigen-
clustering Length-Exchange Theorem [36, 37, 38, 39, 40] . In the current Letter, we restrict ourselves to the
EMELET subcase, meaning with equal (unit) masses in the Physical setting. While ‘mass-weighting’ vertex
points remains meaningful in the Geometrical setting, equal ‘masses’ is also a natural simplicity condition
here.

Example 1 The first nontrivial EMELET, for N = 3 , is Apollonius’ Theorem [1, 18, 30, 34, 44]

MA = 2 ( B + C ) − A

4 . (1)

Notational Remark 1 We use caps for ( length )2 variables. A and cycles are the ( side-lengths )2 , a
and cycles, of a triangle. While MA is the ( length )2 of the median ma corresponding to side a (see
Fig 2.a). Following e.g. Conway, squared variables are well-known to be useful in studying triangles [42].
Much of this usefulness is turning out to transcend to N -body problems [44].

l

Figure 2:
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Example 2 The N = 4 H-EMELET also turns out to be a familiar result [36], for it returns Euler’s
4-Body Theorem [5, 26, 23, 24, 28, 36, 44],

4 N = A + C + B + D − E − F . (2)

Where N is ( Newton length )2 . And Newton length [4, 7, 10, 12, 28, 31] is the distance between the
midpoints of the 2 diagonals of a quadrilateral with sides a, b, c, d . This corresponds to the ‘twisted’ H
in Fig 2.b).

Though Euler’s 3-cycles corresponding to the H’s in Figs 2.c-d) hold as well. Returning

4 L = B + D + E + F − A − C , (3)

4 M = E + F + A + C − B − D . (4)

Which opposite pair of separations plays the role of diagonals is thereby moot. Which is essential for
non-convex quadrilaterals, and tetrahaedrons, to be included [23, 36].

In this way, Euler’s 4-Body Theorem is indeed a truer name. For all that it has been more widely referred
to as Euler’s Quadrilateral Theorem... Apollonius’ Theorem also happens to matchingly hold irrespective of
dimension [34, 44].

Example 3 The N = 4 K-EMELET [37] was recently made public by the Author [37]. The ‘rational’
form for this [paralleling (2)] is

8 P + 9 H = 3 ( B + C + D + E + F − A ) . (5)

Though the following form is more convenient for the current Letter’s considerations.

A

2 + 2
3 P + 3

4 H =
6∑

s = 1
As =

∑
s ∈ sep(4)

As . (6)

Where sep(N) denotes the set of separations contained in an N -body problem configuration. P is the
( length )2 of the ‘spike’ p and H that of the ‘handle’ h . These names and notation follow from viewing

the K as an axe [29, 37]; see Fig 2.f).

3 Discussion
Remark 1 Prima facie, the K-EMELET computes a linear combination of 2 eigenclustering ( lengths )2 .
While Apollonius and Euler each isolate a single eigenclustering length, thus solving for it. So is the K-
EMELET less interesting due to this feature?

Remark 2 In [43], however, it was shown that adjoining Apollonius’ Theorem for the ‘axe-head’ triangle
(Fig 2.f) to (6 ) gives a linear system for P and H . Which is furthermore already-decoupled. In the sense
that we can separately solve Apollonius for P first. And then interpret the K-EMELET as an equation
for H alone.

This yields
H = 3 ( C + D + F ) − ( A + B + E )

9 . (7)

Which looks strikingly like a generalization of Apollonius’ Theorem, in particular given the conceptual
analysis in Fig 3.

The purpose of this Letter is then to prove Fig 3.c)’s hypothesis.
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Figure 3:

Remark 3 Before we start, let us recollect the following result that was also recently made public by the
Author [38].

Theorem 0 (K(N)-EMELET)

n∑
j = 1

j

j + 1 Oj − 1 = 1
N

(
N

2

)
∑

s = 1
As = 1

N

∑
s ∈ sep(N)

As . (8)

Naming Remark 1 O0 is just the ( side-length )2 A , while none of the other Ok correspond to sides.
Let us call an eigenclustering stroke that is not just a side nontrivial. Our aim is then to exchange all the
nontrivial eigenclustering strokes for sides data. This aim is what the ‘ELE’ in ‘ELET’ refers to.

Remark 4 In general, an ELET will not achieve this aim by itself, due to under-determination. But forming
a linear system out of a given eigenclustering basis’ picked out subsystems’ ELETs can overcome this. K(N)
benefits from being an already-decoupled linear system. So one can start at the side and then just move
along the K solving for one stroke at a time. Where moving along the K corresponds to moving along
the straight-Pn path in the AMB representation. Leading to the current Letter’s simple closed formula for
the K(N)-EMELET’s nontrivial eigenclustering lengths.

Remark 5 For an arbitary eigenclustering network, the Ok are [transversals] [35]. I.e. a projectively-dual
portmanteau name for transversals [6, 8, 12] – through a vertex – and cotransversals – instead cutting a side.
Which are then collectively denoted by Tk [38].

For triangles, Cevians [3, 14, 15, 21, 30] are cotransversals while Menelians [2, 14, 15, 21, 30] are transversals.
The quadrilateral’s Newton line interval is also a transversal. But for K(N) , all the [transversals] are
cotransversals. For which we use the notation Ok . ( C is already booked as part of the notation for
sides.)
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4 Proof
Take Fig 3.c)’s hypothesis to be an induction hypothesis for n = some p − 1 .

For p = 1 (and thus N = 2 , n = 1 , n − 1 = 0 ), this collapses to the identity

A = O0 = A . (9)

Which is certainly true.

For N = p , (10) gives
p∑

j = 1

j

j + 1 Oj − 1 = 1
P

∑
s ∈ sep(P )

As . (10)

Where
P := p + 1 . (11)

But also for n = p − 1 , (8) gives

p − 1∑
j = 1

j

j + 1 Oj − 1 = 1
p

∑
u ∈ sep(p)

Au . (12)

Take (10) − (12) , while performing the indexing-set split into

sep(P ) = sep(p) ⨿ sep(p) .

Thus
p

P
Op − 1 = 1

P

∑
v ∈ sep(p)

Av +
(

1
P

− 1
p

) ∑
u ∈ sep(p)

Au . (13)

But
1
P

− 1
p

= p − P

p P

(11)= − 1
p P

. (14)

Thus (13) becomes

Op − 1 = P

p

1
P

 ∑
v ∈ sep(p)

Av − 1
p

∑
u ∈ sep(p)

Au

 . (15)

Which cancels down to our desired result. 2

5 Naming our result
Remark 1 Thus we have proven the following.

Theorem 1 The K(N) eigenclustering’s ( q − 1 )th stroke’s ( length )2 is given by the following.

Oq − 1 = 1
q

 ∑
v ∈ sep(q)

Av − 1
q

∑
u ∈ sep(q)

Au

 . (16)

For sep(q) the set of separations of the q-subsystem which the K(N) eigenclustering in question is
adapted to.

Remark 2 The first nontrivial such is Apollonius’ Theorem. While the first new such is the outcome of
solving the K-EMELET coupled to Apollonius’ Theorem for the corresponding ‘axe-head’ 3-subsystem.
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Naming Remark 2 Apollonius–Jacobi–K(N) Theorem is thus a reasonable name. The K(N) ’s own
truer name is straight-Pn, while ‘eigenclustering’ is a truer name for ‘relative Jacobi’. So straight-Pn-
Eigenclustering Length Theorem is a truer name. This confers a new name – P2-Eigenclustering Length
Theorem – to Apollonius’ Theorem. [This path is short enough to not need to specify a rooting, which is
the function that ‘straight’ performs.]
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