

An infinite Series of Generalizations of Apollonius' Theorem

Edward Anderson*

Abstract

Apollonius' Theorem gives the length of a triangle's median in terms of the lengths of its sides. We generalize this to an infinite series of formulae for the lengths of the equal-masses N -simplex's $K(N)$ -eigenclustering's strokes. These simple formulae closely resemble Apollonius' Theorem in form. Which Theorem is indeed their first nontrivial member, corresponding to viewing the median as the first non-side stroke of a $K(N)$ eigenclustering. Eigenclustering vectors are alias relative Jacobi vectors. While $K(N)$ is the obvious N -body problem generalization of the 4-body problem's K-eigenclustering, alias Jacobi-K .

* Dr.E.Anderson.Maths.Physics *at* protonmail.com . Institute for the Theory of STEM.

Date stamp v1: 14-01-2025. Copyright of Dr E. Anderson

1 Eigenclusterings

Remark 1 The N -simplex in some \mathbb{R}^d supports

$$\binom{N}{2}$$

separations between its vertex points. Of which only

$$n := N - 1$$

are linearly independent. The N -simplex can also be viewed as a Physical N -body problem's N -particle configuration in \mathbb{R}^d . For $N \geq 3$, a choice of n relative separations does not diagonalize the inertia quadric. But linear bases of *eigenclustering vectors* do. Eigenclustering vectors [32, 36] are alias *relative Jacobi vectors* [9, 17, 20, 25]. While at the present level of reduction, the inertia quadric is equivalent to the Euclidean metric on relative space [32, 44] in Physics-free terms.

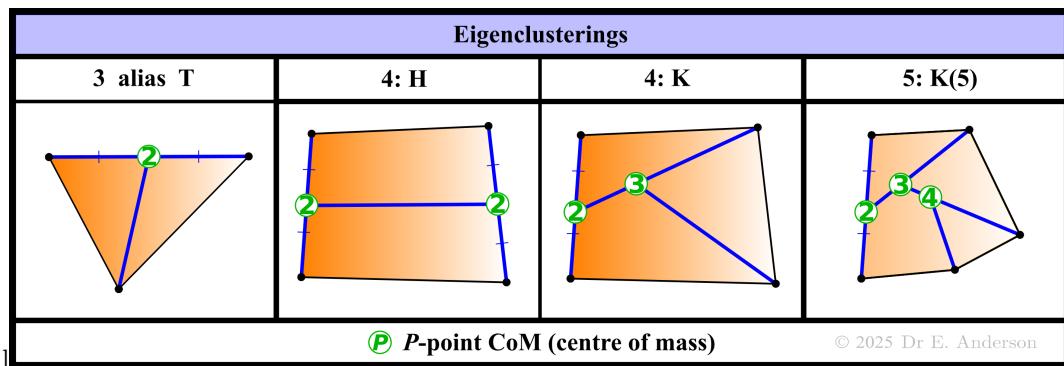


Figure 1:

Example 1 $N = 3$ supports a single eigenclustering network: the T-shape of Fig 1.3.

Example 2 $N = 4$ exhibits a first eigenclustering network ambiguity. Namely, H- versus K-eigenclustering, alias the Jacobi-H and -K ; see Fig 1.4.

Remark 2 Such eigenclustering network ambiguities growingly persist for all subsequent N . More specifically, the N -body problem supports $w(N)$ eigenclustering networks, where w denotes the *Wedderburn–Etherington numbers* [11, 13, 16, 19, 41]. This is since the eigenclustering networks are in $1 : 1$ correspondence with [25, 40] the unlabelled rooted binary trees [22, 27, 33, 40].

Example 3 Every N supports a generalized-K eigenclustering $K(N)$, formed by keeping on adding 1 point at a time to the growing network. This recursive construction corresponds to forming the straight- P_n path in the AMB tree representation. Where AMB stands for *at-most binary*, which is a more efficient representation than the binary version for our domain of interest, $N \geq 3$. Whereupon it is related to [40] the somewhat larger binary tree representation by defoliation [33]. See Fig 1.5 for $K(5)$.

2 ELETs

Remark 1 For each $N \geq 3$, every eigenclustering network supports a nontrivial *ELET*. I.e. an *Eigenclustering Length-Exchange Theorem* [36, 37, 38, 39, 40]. In the current Letter, we restrict ourselves to the EMELET subcase, meaning with equal (unit) masses in the Physical setting. While ‘mass-weighting’ vertex points remains meaningful in the Geometrical setting, equal ‘masses’ is also a natural simplicity condition here.

Example 1 The first nontrivial EMELET, for $N = 3$, is *Apollonius’ Theorem* [1, 18, 30, 34, 44]

$$M_A = \frac{2(B + C) - A}{4}. \quad (1)$$

Notational Remark 1 We use caps for $(\text{length})^2$ variables. A and cycles are the $(\text{side-lengths})^2$, a and cycles, of a triangle. While M_A is the $(\text{length})^2$ of the median m_a corresponding to side a (see Fig 2.a). Following e.g. Conway, squared variables are well-known to be useful in studying triangles [42]. Much of this usefulness is turning out to transcend to N -body problems [44].

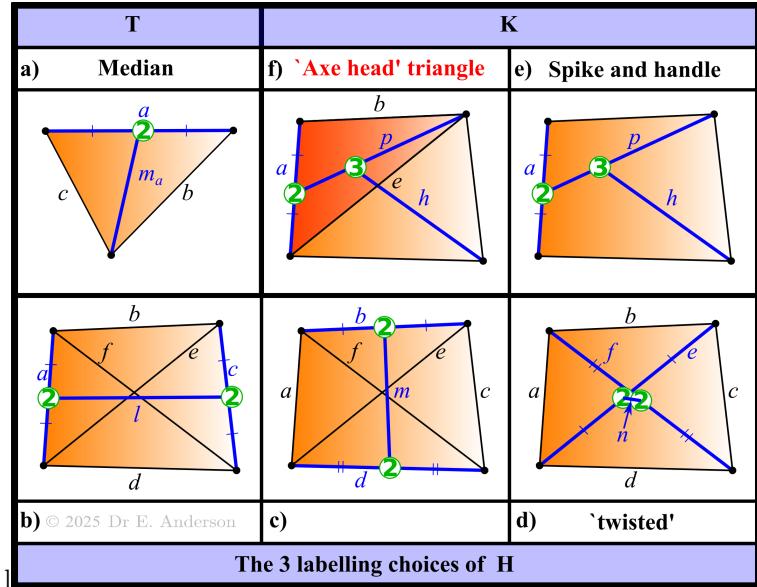


Figure 2:

Example 2 The $N = 4$ H-EMELET also turns out to be a familiar result [36], for it returns Euler's 4-Body Theorem [5, 26, 23, 24, 28, 36, 44],

$$4N = A + C + B + D - E - F. \quad (2)$$

Where N is (Newton length)². And Newton length [4, 7, 10, 12, 28, 31] is the distance between the midpoints of the 2 diagonals of a quadrilateral with sides a, b, c, d . This corresponds to the 'twisted' H in Fig 2.b).

Though Euler's 3-cycles corresponding to the H's in Figs 2.c-d) hold as well. Returning

$$4L = B + D + E + F - A - C, \quad (3)$$

$$4M = E + F + A + C - B - D. \quad (4)$$

Which opposite pair of separations plays the role of diagonals is thereby moot. Which is essential for non-convex quadrilaterals, and tetrahedrons, to be included [23, 36].

In this way, Euler's 4-Body Theorem is indeed a truer name. For all that it has been more widely referred to as Euler's Quadrilateral Theorem... Apollonius' Theorem also happens to matchingly hold irrespective of dimension [34, 44].

Example 3 The $N = 4$ K-EMELET [37] was recently made public by the Author [37]. The 'rational' form for this [paralleling (2)] is

$$8P + 9H = 3(B + C + D + E + F - A). \quad (5)$$

Though the following form is more convenient for the current Letter's considerations.

$$\frac{A}{2} + \frac{2}{3}P + \frac{3}{4}H = \sum_{s=1}^6 A_s = \sum_{s \in \text{sep}(4)} A_s. \quad (6)$$

Where $\text{sep}(N)$ denotes the set of separations contained in an N -body problem configuration. P is the (length)² of the 'spike' p and H that of the 'handle' h . These names and notation follow from viewing the K as an axe [29, 37]; see Fig 2.f).

3 Discussion

Remark 1 Prima facie, the K-EMELET computes a linear combination of 2 eigenclustering (lengths)². While Apollonius and Euler each isolate a single eigenclustering length, thus solving for it. So is the K-EMELET less interesting due to this feature?

Remark 2 In [43], however, it was shown that adjoining Apollonius' Theorem for the 'axe-head' triangle (Fig 2.f) to (6) gives a linear system for P and H . Which is furthermore already-decoupled. In the sense that we can separately solve Apollonius for P first. And then interpret the K-EMELET as an equation for H alone.

This yields

$$H = \frac{3(C + D + F) - (A + B + E)}{9}. \quad (7)$$

Which looks strikingly like a generalization of Apollonius' Theorem, in particular given the conceptual analysis in Fig 3.

The purpose of this Letter is then to prove Fig 3.c)'s hypothesis.

Reformulating the two smallest nontrivial $K(N)$ -eigenclustering strokes

$$\mathbf{a)} M_A = \frac{1}{2} \left(B + C - \frac{A}{2} \right)$$

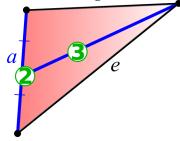
$$\mathbf{b)} H = \frac{1}{3} \left(C + D + F - \frac{A + B + E}{3} \right)$$

3) Denotes complement

$$O_1 = \frac{1}{2} \left(\sum_{v \in \text{sep}(2)} A_v - \frac{1}{2} \sum_{u \in \text{sep}(2)} A_u \right) \quad O_2 = \frac{1}{3} \left(\sum_{v \in \text{sep}(3)} A_v - \frac{1}{3} \sum_{u \in \text{sep}(3)} A_u \right)$$

1) The 'base' side
corresponding to the median,
viewed as 2-subsystem

2) The axe-head
triangle 3-subsystem



c) So we hypothesize for the last stroke O_{n-1} of a $K(N)$ -eigenclustering

$$O_{n-1} = \frac{1}{n} \left(\sum_{v \in \text{sep}(n)} A_v - \frac{1}{n} \sum_{u \in \text{sep}(n)} A_u \right)$$

© 2025 Dr E. Anderson

Figure 3:

Remark 3 Before we start, let us recollect the following result that was also recently made public by the Author [38].

Theorem 0 ($K(N)$ -EMELET)

$$\sum_{j=1}^n \frac{j}{j+1} O_{j-1} = \frac{1}{N} \sum_{s=1}^{\binom{N}{2}} A_s = \frac{1}{N} \sum_{s \in \text{sep}(N)} A_s. \quad (8)$$

Naming Remark 1 O_0 is just the (side-length)² A , while none of the other O_k correspond to sides. Let us call an eigenclustering stroke that is not just a side *nontrivial*. Our aim is then to exchange all the nontrivial eigenclustering strokes for sides data. This aim is what the 'ELE' in 'ELET' refers to.

Remark 4 In general, an ELET will not achieve this aim by itself, due to under-determination. But forming a linear system out of a given eigenclustering basis' picked out subsystems' ELETs can overcome this. $K(N)$ benefits from being an already-decoupled linear system. So one can start at the side and then just move along the K solving for one stroke at a time. Where moving along the K corresponds to moving along the straight- P_n path in the AMB representation. Leading to the current Letter's simple closed formula for the $K(N)$ -EMELET's nontrivial eigenclustering lengths.

Remark 5 For an arbitrary eigenclustering network, the O_k are [transversals] [35]. I.e. a projectively-dual portmanteau name for transversals [6, 8, 12] – through a vertex – and cotransversals – instead cutting a side. Which are then collectively denoted by T_k [38].

For triangles, Cevians [3, 14, 15, 21, 30] are cotransversals while Menelians [2, 14, 15, 21, 30] are transversals. The quadrilateral's Newton line interval is also a transversal. But for $K(N)$, all the [transversals] are cotransversals. For which we use the notation O_k . (C is already booked as part of the notation for sides.)

4 Proof

Take Fig 3.c)'s hypothesis to be an induction hypothesis for $n = \text{some } p - 1$.

For $p = 1$ (and thus $N = 2$, $n = 1$, $n - 1 = 0$), this collapses to the identity

$$A = O_0 = A. \quad (9)$$

Which is certainly true.

For $N = p$, (10) gives

$$\sum_{j=1}^p \frac{j}{j+1} O_{j-1} = \frac{1}{P} \sum_{s \in \text{sep}(P)} A_s. \quad (10)$$

Where

$$P := p + 1. \quad (11)$$

But also for $n = p - 1$, (8) gives

$$\sum_{j=1}^{p-1} \frac{j}{j+1} O_{j-1} = \frac{1}{p} \sum_{u \in \text{sep}(p)} A_u. \quad (12)$$

Take (10) – (12), while performing the indexing-set split into

$$\text{sep}(P) = \text{sep}(p) \amalg \overline{\text{sep}(p)}.$$

Thus

$$\frac{p}{P} O_{p-1} = \frac{1}{P} \sum_{v \in \text{sep}(p)} A_v + \left(\frac{1}{P} - \frac{1}{p} \right) \sum_{u \in \text{sep}(p)} A_u. \quad (13)$$

But

$$\frac{1}{P} - \frac{1}{p} = \frac{p - P}{pP} \stackrel{(11)}{=} -\frac{1}{pP}. \quad (14)$$

Thus (13) becomes

$$O_{p-1} = \frac{P}{p} \frac{1}{P} \left(\sum_{v \in \text{sep}(p)} A_v - \frac{1}{p} \sum_{u \in \text{sep}(p)} A_u \right). \quad (15)$$

Which cancels down to our desired result. \square

5 Naming our result

Remark 1 Thus we have proven the following.

Theorem 1 The $K(N)$ eigenclustering's $(q - 1)$ th stroke's (length)² is given by the following.

$$O_{q-1} = \frac{1}{q} \left(\sum_{v \in \text{sep}(q)} A_v - \frac{1}{q} \sum_{u \in \text{sep}(q)} A_u \right). \quad (16)$$

For $\text{sep}(q)$ the set of separations of the q -subsystem which the $K(N)$ eigenclustering in question is adapted to.

Remark 2 The first nontrivial such is Apollonius' Theorem. While the first new such is the outcome of solving the K-EMELET coupled to Apollonius' Theorem for the corresponding 'axe-head' 3-subsystem.

Naming Remark 2 *Apollonius–Jacobi–K(N) Theorem* is thus a reasonable name. The K(N)’s own truer name is straight-P_n, while ‘eigenclustering’ is a truer name for ‘relative Jacobi’. So *straight-P_n-Eigenclustering Length Theorem* is a truer name. This confers a new name – P₂-*Eigenclustering Length Theorem* – to Apollonius’ Theorem. [This path is short enough to not need to specify a rooting, which is the function that ‘straight’ performs.]

Acknowledgments I thank S for previous discussions and A and K for ongoing discussions. And the other participants at the Institute for the Theory of STEM’s ‘Linear Algebra of the N-body Problem’ Summer School 2024. C for career support. And S, Chris Isham, Don Page and Malcolm MacCallum for large parts of my education.

References

- [1] Apollonius of Perga (3rd and 2nd Centuries B.C.E.).
- [2] Menelaus of Alexandria (1st and 2nd Centuries C.E.).
- [3] King Hud of Zaragoza alias al-Mu’taman (11th Century);
G. Ceva, *De Lineis Rectis (On Straight Lines)* (1678).
- [4] I. Newton evoked the Newton line in proving a Theorem about Quadrilaterals. For an English translation, see e.g. *The Mathematical Papers of Isaac Newton* ed. D. Whiteside (C.U.P., Cambridge 1967–1981).
- [5] L. Euler worked on Geometry, among many other topics, in the 18th Century; this Theorem dates to 1748.
- [6] L. Carnot, *Essai sur la Théorie des Transversales* (Courcier, Paris, 1806).
- [7] C.F. Gauss established further properties of the Newton line in the 19th Century. For a popular account, of this work of Gauss see e.g. D. Wells, *The Penguin Dictionary of Curious and Interesting Geometry* (1991).
- [8] M. Chasles, *Apercu Historique sur l’Origine et le Développement des Méthodes en Géométrie*. (Hayez, Paris 1837; reprinted by Gauthier-Villars, Paris 1875).
- [9] C.G.J. Jacobi worked on Mechanics, among many other topics, in the 1840s.
- [10] C.V. Durell, *Modern Geometry: The Straight Line and Circle* (U. California Libraries, 1920; Macmillan, London 1928).
- [11] J.H.M. Wedderburn, “The Functional Equation $g(x^2) = 2ax + [g(x)]^2$ ”, *Ann. Math.* **24** 121 (1922).
- [12] R.A. Johnson, *Modern Geometry* alias *Advanced Euclidean Geometry* (Houghton, Boston, 1929; reprinted by Dover, Mineola N.Y. 1960).
- [13] I.M.H. Etherington, “Non-associate Powers and a Functional Equation”, *Math. Gazette*, **21** 36 (1937);
“On Non-associative Combinations”, *Proc. Royal Soc. Edinburgh*, **59** 153 (1939).
- [14] Hazel Perfect, *Topics in Geometry* (Pergamon, London 1963).
- [15] H.S.M. Coxeter and S.L. Greitzer, *Geometry Revisited* (M.A.A., Washington, D.C. 1967).
- [16] B.V. Landau, “An Asymptotic Expansion for the Wedderburn-Etherington Sequence”, *Mathematika*, **24** 262 (1977).
- [17] C. Marchal, *Celestial Mechanics* (Elsevier, Tokyo 1990).
- [18] D.C. Kay, *College Geometry* (Harper Collins, 1994).
- [19] N.J.A. Sloane and S. Plouffe, *The Encyclopedia of Integer Sequences* (Academic Press, 1995).
- [20] R.G. Littlejohn and M. Reinsch, “Gauge Fields in the Separation of Rotations and Internal Motions in the N-Body Problem”, *Rev. Mod. Phys.* **69** 213 (1997).
- [21] J.R. Sylvester, *Geometry Ancient and Modern* (O.U.P., New York 2001).
- [22] D.B. West, *Introduction to Graph Theory* (Prentice-Hall, Upper Saddle River N.J. 2001).
- [23] G.A. Kandall, “Euler’s Theorem for Generalized Quadrilaterals”, *College Math. J.* **33** 403 (2002).

[24] S.-H. Chou and S. He, "On the Regularity and Uniformness Conditions on Quadrilateral Grids", *Computer Methods App. Math. Eng.* **191** 5149 (2002).

[25] H. Cabral and F. Diacu, *Classical and Celestial Mechanics* (P.U.P. , Princeton NJ 2002).

[26] W. Dunham, "Quadrilaterally Speaking", in *The Edge of the Universe: Celebrating Ten Years of Math Horizons* ed. D. Haunsperger and S. Kennedy (M.A.A., Washington D.C. 2006)

[27] M. Bóna and P. Flajolet, "Isomorphism and Symmetries in Random Phylogenetic Trees", *J. Applied Probability*, **46** 1005 (2009), arXiv:0901.0696,

[28] C. Alsina and R. B. Nelsen, *Charming Proofs* (M.A.A., Washington D.C. 2010).

[29] E. Anderson, "Relational Quadrilateralland. I. The Classical Theory", *Int. J. Mod. Phys. D* **23** 1450014 (2014), arXiv:1202.4186;
E. Anderson and S.A.R. Kneller, "II. The Quantum Theory", *ibid.* 1450052 (2014), arXiv:1303.5645.

[30] I.E. Leonard, J.E. Lewis, A.C.F. Liu and G.W. Tokarsky, *Classical Geometry. Euclidean, Transformational Inversive and Projective* (Wiley, Hoboken N.J. 2014).

[31] E.A. Weinstein, " Inequalities in Quadrilateral involving Newton Line", *Int. J. Geom.* **5** 54 (2016).

[32] E. Anderson, "The Smallest Shape Spaces. I. Shape Theory Posed, with Example of 3 Points on the Line", arXiv:1711.10054. For the updated version, see <https://wordpress.com/page/conceptsofshape.space/1225> .

[33] E. Anderson, *Applied Combinatorics*, Widely-Applicable Mathematics Series. A. Improving understanding of everything with a pinch of Combinatorics. **0**, (2022). Made freely available in response to the pandemic here: <https://conceptsofshape.space/applied-combinatorics/> .

[34] "A New 'Physical' Proof of Apollonius' Theorem" (2024), <https://wordpress.com/page/conceptsofshape.space/1353> .

[35] "Generalizing Heron's Formula by use of Multi-Linear Algebra. II. Möbius, Jacobi and Routh for Concurrent Cevians" (2024), <https://wordpress.com/page/conceptsofshape.space/1261>.

[36] "Euler's Quadrilateral Theorem. I. A brief new Proof that is Physically Guaranteed to Generalize." alias "Eigenclustering-Length Exchange Theorems. I. P₂ and bent-P₃ . (2024), <https://wordpress.com/page/conceptsofshape.space/1297> .

[37] "Eigenclustering-Length Exchange Theorems. II. Straight-P₃ alias K-counterpart of Euler-H . (2024), <https://wordpress.com/page/conceptsofshape.space/1299> .

[38] "III. The Bottom Series: Straight-P_n . (2024), <https://wordpress.com/page/conceptsofshape.space/1301> .

[39] "IV. 5-Body Problem" . (2024), <https://wordpress.com/page/conceptsofshape.space/1512> ;
"V. 6-Body Problem" . (2025), <https://wordpress.com/page/conceptsofshape.space/1514> ;
"VI. The Top Series: Chain of Claws (with Leaf)" . (2025), <https://wordpress.com/page/conceptsofshape.space/1516>.

[40] E. Anderson and A. Ford, "Graph and Order Theory of N-Body Problem's Eigenclustering Networks", <https://wordpress.com/page/conceptsofshape.space/2090> (2024).

[41] The On-Line Encyclopedia of Integer Sequences, "Wedderburn-Etherington Numbers", <https://oeis.org/A001190> (2025).

[42] C. Kimberling, Encyclopedia of Triangle Centers, <http://faculty.evansville.edu/ck6/encyclopedia/ETC.html> (2025).

[43] E. Anderson, K. Everard and A. Ford, "Stewart's Theorem generalized to 1 Theorem per Eigenclustering Network per N-Simplex", <https://wordpress.com/page/conceptsofshape.space/2721> (2025).

[44] E. Anderson, *The Structure of Flat Geometry, Widely-Applicable Mathematics. A. Improving understanding of everything by dual-wielding Combinatorics and Linear Algebra.* **3**, forthcoming 2025.