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Abstract

Apollonius’ Theorem gives the length of a triangle’s median in terms of the lengths of its sides. We
generalize this to an infinite series of formulae for the lengths of the equal-masses N-simplex’s K(N)-
eigenclustering’s strokes. These simple formulae closely resemble Apollonius’ Theorem in form. Which
Theorem is indeed their first nontrivial member, corresponding to viewing the median as the first non-
side stroke of a K (INN) eigenclustering. Eigenclustering vectors are alias relative Jacobi vectors. While

K(N) is the obvious N-body problem generalization of the 4-body problem’s K-eigenclustering, alias
Jacobi-K .
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1 Eigenclusterings

Remark 1 The N-simplex in some R? supports

N
2
separations between its verttex points. Of which only
n =N —1

are linearly independent. The N-simplex can also be viewed as a Physical N-body problem’s N-particle
configuration in R? . For N > 3 , a choice of n relative separations does not diagonalize the inertia
quadric. But linear bases of eigenclustering vectors do. Eigenclustering vectors [32, 36] are alias relative
Jacobi vectors [9, 17, 20, 25]. While at the present level of reduction, the inertia quadric is equivalent to the
Euclidean metric on relative space [32, 44] in Physics-free terms.
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Figure 1:

Example 1 N = 3 supports a single eigenclustering network: the T-shape of Fig 1.3.

Example 2 N = 4 exhibits a first eigenclustering network ambiguity. Namely, H- versus K-eigenclustering,
alias the Jacobi-H and -K ; see Fig 1.4.



Remark 2 Such eigenclustering network ambiguities growingly persist for all subsequent N . More specif-
ically, the N-body problem supports w(N) eigenclustering networks, where w denotes the Wedderburn—
Etherington numbers [11, 13, 16, 19, 41]. This is since the eigenclustering networks are in 1 : 1 correspon-
dence with [25, 40] the unlabelled rooted binary trees [22, 27, 33, 40].

Example 3 Every N supports a generalized-K eigenclustering K(N) , formed by keeping on adding 1
point at a time to the growing network. This recursive construction corresponds to forming the straight-P,,
path in the AMB tree representation. Where AMB stands for at-most binary, which is a more efficient
representation than the binary version for our domain of interest, N > 3 . Whereupon it is related to
[40] the somewhat larger binary tree representation by defoliation [33]. See Fig 1.5 for K(5) .

2 ELETSs

Remark 1 For each N > 3, every eigenclustering network supports a nontrivial ELET. L.e. an Figen-
clustering Length-Exchange Theorem [36, 37, 38, 39, 40] . In the current Letter, we restrict ourselves to the
EMELET subcase, meaning with equal (unit) masses in the Physical setting. While ‘mass-weighting’ vertex
points remains meaningful in the Geometrical setting, equal ‘masses’ is also a natural simplicity condition
here.

Example 1 The first nontrivial EMELET, for N = 3, is Apollonius’ Theorem [1, 18, 30, 34, 44|

u, = 2B A4 1)

Notational Remark 1 We use caps for (length)? variables. A and cycles are the (side-lengths)?, a
and cycles, of a triangle. While M4 is the (length)? of the median m, corresponding to side a (see
Fig 2.a). Following e.g. Conway, squared variables are well-known to be useful in studying triangles [42].
Much of this usefulness is turning out to transcend to N-body problems [44].
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Example 2 The N = 4 H-EMELET also turns out to be a familiar result [36], for it returns Euler’s
4-Body Theorem [5, 26, 23, 24, 28, 36, 44],

AN = A+ C+B+D—-E—F. (2)

Where N is (Newton length)? . And Newton length [4, 7, 10, 12, 28, 31] is the distance between the
midpoints of the 2 diagonals of a quadrilateral with sides a, b, ¢, d . This corresponds to the ‘twisted” H
in Fig 2.b).

Though Euler’s 3-cycles corresponding to the H’s in Figs 2.c-d) hold as well. Returning
AL =B+ D+ E+ F - A-C, (3)

AM = E+ F+A+C—-B-D. (4)

Which opposite pair of separations plays the role of diagonals is thereby moot. Which is essential for
non-convex quadrilaterals, and tetrahaedrons, to be included [23, 36].

In this way, Euler’s 4-Body Theorem is indeed a truer name. For all that it has been more widely referred
to as Euler’s Quadrilateral Theorem... Apollonius’ Theorem also happens to matchingly hold irrespective of
dimension [34, 44].

Example 3 The N = 4 K-EMELET [37] was recently made public by the Author [37]. The ‘rational’
form for this [paralleling (2)] is

8P +9H =3(B+C+ D+ E+F — A). (5)

Though the following form is more convenient for the current Letter’s considerations.

A 6

s=1 s € sep(4)

Where sep(N) denotes the set of separations contained in an N-body problem configuration. P is the
(length)? of the ‘spike’ p and H that of the ‘handle’ h . These names and notation follow from viewing
the K as an axe [29, 37]; see Fig 2.f).

3 Discussion

Remark 1 Prima facie, the K-EMELET computes a linear combination of 2 eigenclustering (lengths)? .
While Apollonius and Euler each isolate a single eigenclustering length, thus solving for it. So is the K-
EMELET less interesting due to this feature?

Remark 2 In [43], however, it was shown that adjoining Apollonius’ Theorem for the ‘axe-head’ triangle
(Fig 2.f) to (6 ) gives a linear system for P and H . Which is furthermore already-decoupled. In the sense
that we can separately solve Apollonius for P first. And then interpret the K-EMELET as an equation
for H alone.

This yields

H:3(0+D+F)9—(A+B+E). -

Which looks strikingly like a generalization of Apollonius’ Theorem, in particular given the conceptual
analysis in Fig 3.

The purpose of this Letter is then to prove Fig 3.c)’s hypothesis.



Reformulating the two smallest nontrivial K(/V)-eigenclustering strokes
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Remark 3 Before we start, let us recollect the following result that was also recently made public by the
Author [38].

Theorem 0 (K(IN)-EMELET)

()
i J 0. _ 1 22: A, = 1 Z A (8)
j=1j+1 j—1 — N — s N s -

s s € sep(N)

Naming Remark 1 Oy is just the (side-length)? A , while none of the other Oy correspond to sides.
Let us call an eigenclustering stroke that is not just a side nontrivial. Our aim is then to exchange all the
nontrivial eigenclustering strokes for sides data. This aim is what the ‘ELE’ in ‘ELET’ refers to.

Remark 4 In general, an ELET will not achieve this aim by itself, due to under-determination. But forming
a linear system out of a given eigenclustering basis’ picked out subsystems’ ELETSs can overcome this. K(V)
benefits from being an already-decoupled linear system. So one can start at the side and then just move
along the K solving for one stroke at a time. Where moving along the K corresponds to moving along
the straight-P,, path in the AMB representation. Leading to the current Letter’s simple closed formula for
the K(N)-EMELET’s nontrivial eigenclustering lengths.

Remark 5 For an arbitary eigenclustering network, the Oy, are [transversals] [35]. Le. a projectively-dual
portmanteau name for transversals [6, 8, 12] — through a vertex — and cotransversals — instead cutting a side.
Which are then collectively denoted by T} [38].

For triangles, Cevians [3, 14, 15, 21, 30] are cotransversals while Menelians [2, 14, 15, 21, 30] are transversals.
The quadrilateral’s Newton line interval is also a transversal. But for K(N) , all the [transversals] are

cotransversals. For which we use the notation O . ( C is already booked as part of the notation for
sides.)



4 Proof

Take Fig 3.c)’s hypothesis to be an induction hypothesis for n = some p — 1 .

For p =1 (andthus N = 2, n =1, n — 1 = 0 ), this collapses to the identity

A =0y = A. (9)
Which is certainly true.
For N = p , (10) gives
P
J 1
]—1]+1 Psescp(P)
Where
P =p+1 (11)
But also for n = p — 1 , (8) gives
p—1 j 1
Zj+1oj‘1 - > A (12)
j=1 u € sep(p)

Take (10) — (12) , while performing the indexing-set split into

sep(P) = sep(p) II sep(p) .

Thus . . .
%op_l -5 A1,+<P—p> Y A (13)
v € sep(p) u € sep(p)
but 1 1 P 1
p - (11)
5 - - = = - 14
P P pP pP (14)
Thus (13) becomes
P 1 1
- = 5 Av - - Au . 1
O-1=25| X = (15)

v € sep(p) u € sep(p)

Which cancels down to our desired result. O

5 Naming our result

Remark 1 Thus we have proven the following.

Theorem 1 The K(N) eigenclustering’s (g — 1)th stroke’s (length)? is given by the following.

oq_lzé > Av—é oA (16)

v € sep(q) u € sep(q)

For sep(q) the set of separations of the ¢-subsystem which the K(N) eigenclustering in question is
adapted to.

Remark 2 The first nontrivial such is Apollonius’ Theorem. While the first new such is the outcome of
solving the K-EMELET coupled to Apollonius’ Theorem for the corresponding ‘axe-head’ 3-subsystem.



Naming Remark 2 Apollonius—Jacobi-K(N) Theorem is thus a reasonable name. The K(N)’s own
truer name is straight-P,,, while ‘eigenclustering’ is a truer name for ‘relative Jacobi. So straight-P,-
FEigenclustering Length Theorem is a truer name. This confers a new name — Po-Figenclustering Length
Theorem — to Apollonius’ Theorem. [This path is short enough to not need to specify a rooting, which is
the function that ‘straight’ performs.]
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