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With implications for deriving Hopf and Kendall’s Little Results.
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Abstract
All of the triangle inequality, the cosine rule and Heron’s formula can be formulated in terms
of the same fundamental triangle matrix, F . We now consider its interplay with two further
3-body matrices. Firstly, the Lagrange matrix L , alias P since it is a projector. F and P

commute, share eigenspaces, and can be taken to share eigenbasis of eigenvectors. The 3-body
eigenclustering vectors, alias relative Jacobi vectors, that are well-known from L , are thereby
also natural in considering F .

In the Geometrically simplest unit vertex masses conceptualization, these eigenvectors are Geo-
metrically a side vector and the corresponding median vector. By which how sides and medians
transform into each other becomes of interest. And so our last matrix the sides–medians or Apol-
lonius involution J is encountered. All three of P , J , F commute, . share all eigenspaces,
and can be taken to share eigenbasis of eigenvectors.

These considerations give a new proof of the medians-data counterpart of Heron’s formula.
And, for a particular choice of eigenbasis, principles for which we cover here, a new derivation of
Hopf’s Little Mathematics from just Heron’s formula. Leading into a new derivation from just
Heron’s formula of Kendall’s Little Theorem. I.e. that the shape space of triangles – modulo
similarities – is metric-geometrically a sphere.
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1 Introduction
1.1 The Lagrange projector
Remark 1 The current Article concerns the interplay between 3 3-body 3 × 3 matrices. The
first of these is of a conceptual type that occurs for all material N ( meaning ≥ 1 ) . One way
of viewing these is as Lagrange matrices, which we set up as follows.

Structure 0 Consider a Mechanical system of N point-particle masses in Rd [22, 30]. Its inertia
quadric is

I =
N∑

I = 1
mI qI 2 =

N∑
I ̸= J = 1

mI mJ

M
rIJ 2 .

Where, in the first – absolute – form, the mI are masses and the qI are position vectors. Which,
as well as carrying the internal particle-label index I running from 1 to N , are spatial vectors.
In the second – relative form [4, 36],

rIJ := qJ − qI

are the relative separation vectors of each particle pair. And M is the total mass of the system.

Structure 1 The interconversion between the qI and rIJ is encoded by the Lagrange matrix L
as follows.

||r||2 = ||q||L2 = q · L · q . (1)

So each Lagrange matrix is the corresponding N ’s relative-separations to position-coordinates ma-
trix.

Structure 1′ Another way of viewing these matrices is as projectors P obeying

P 2 = P . (2)

It is a projection from the constellation space q( d, N ) of N -point-or-particle configurations in
Rd . To the relative space Relative( d, N ) of linearly independent (LI) relative separations

[56, 49]. These spaces are furthermore Rd N and Rd n respectively, where

n := N − 1. (3)

It is much more widely known as taking out the centre of mass (CoM). Which can furthermore be
viewed as quotienting down from constellation space to relative space. Or indeed as projecting out
the CoM position.

Remark 2 When equal masses are accorded to the N -body’s points-or-particles, the above two
notions coincide . In this case, we refer to the matrix as the Lagrange projector. See [56, 49] for
recent reviews.

♠ ⋄ ♣

Remark 3 N = 1 return just
L = 0 : (4)

the zero scalar. See Fig 1 for the two next smallest cases, which play pivotal roles in the current
Article.

2



1.2 The Apollonius involution
Remark 1 The current Article’s second matrix arises as follows [60].

Apollonius’ sides-to-medians Theorem [1, 45, 33, 48]. The square of the length of the median
ma emanating from vertex A of a triangle is given by the following.

ma
2 = 1

4
(

2 b2 + 2 c2 − a2 )
. (5)

Remark 2 Considering all cycles of of (5) is quite common in the literature; see e.g. [33, 45].

Remark 3 In squared variables,

MA = 1
4 ( 2 B + 2 C − A ) and cycles . (6)

Structure 2 This cycle can furthermore be packaged into [51] the sides-to-medians alias Apollonius
matrix O . I.e.

O := 1
4

 -1 2 2
2 -1 2
2 2 -1

 . (7)

Such that

M = O · S , (8)

for M the ( medians )2 vector.

Remark 4 O furthermore turns out to be proportional to the following involution [51].

J := 1
3

 -1 2 2
2 -1 2
2 2 -1

 . (9)

Clearly,
J = 4

3 O . (10)

Involution means that
J2 = I . (11)

With 2 being the smallest power for which the identity matrix arises. I.e. this definition is to the
exclusion of the identity matrix itself.
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1.3 The fundamental triangle matrix F

Structure 3 We already introduced F in Article 1, though the Reader can also conveniently pick
out its form at the centre of Fig 1. F arises as the core of the quadratic form formulation [3, 32, 51]
of Heron’s formula [2, 10]. And in very many further a priori conceptually distinct ways [55, 57, 71].
As befits not only a citizen of Kallista but also one which turns out to be twinned with the illustrious
Hopf’s Little Map [7, 20, 28, 41, 42, 71].

Aside 1 The M(N) and N(N) matrices in Fig 1 are provided to give context to the following.
That L(2) = P (2) – a key object in the current Article [52] – is a conflation of all 3 of our
3-body matrices. Though for N = 2 , the projector property overwrites the others. Nor are
M(N) and N(N) realized beyond N = 3 . Do the following Exercise and see End-Note 2 in

Sec 5 for further pointers in this regard.

Exercise 1 Show that no projector can also be an involution. That L(N) is a projector for every
N ∈ N . And that M(N) is only an involution for N = 1 and 3 .

1.4 Outline of the rest of this Article
In Sec 2, we jointly tabulate some basic eigentheory for each of our 3 matrices. Observing that
all of them share eigenspaces, and thus can be made to share a basis of eigenvectors. We also cover
the N = 2 joint precursor of these 3 matrices. For which the Lagrange projector overwrites
subsequent N ’s other two matrices’ properties. We use this precursor to fix a basis for the nontrivial
– 2-d – eigenspace. Such fixing has been called ‘hierarchical’, though we argue for the technically
sharper term ‘induced representation’. This, and Mechanics and Geometry principles contrasted
more generally, is the subject of Sec 3.

In Sec 4, we show that all 3 of our matrices commute with each other. While some commuting
sets of matrices have common eigenbases, others do not.

Exercise 2 Find two commuting matrices for which no common eigenbasis can be found.

We end with some further interplays in Sec 5. In particular, the ‘hierarchical’ or ‘induced’ eigenbasis
leads from Heron’s formula to Hopf’s Little map. This motivates the current Article presenting
specific arguments for fixing this eigenbasis. And can be built up to a simple new proof of Kendall’s
Little Theorem from just Heron’s formula. This Theorem structurally extends Smale’s Little The-
orem [17, 55]. In the sense of the shape space of triangles – modulo similarities – being not only
Topologically but also Metric-Geometrically a sphere. We also show that involution combines with
one of the zero commutators to return a new Linear Algebra proof [51, 59] of the medians-data
Heron formula [6, 24, 33, 40].
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2 Eigentheory
2.1 Eigenvalue level analysis

l

Figure 2:

Remark 1 See Fig 2. With reference to Article 1’s notions, conventions and notation.

Example N = 1 This is already diagonal, so there is no eigentheory to work out.

Example N = 2 The symmetry–antisymmetry outcome here is very familiar; c.f. e.g. vibration
modes or spin.

Example N = 3 Here some of the eigentheory of F and J was previously worked out in [51].
While that of P is longstanding.

Exercise 3 More experienced Physicists among the Readers might wish to compare the above
analysis for L with the following in dimensions 4 , 2 and especially 3 . Carroll spacetime: the
zero speed-of-light limit [12, 14] of Minkowski spacetime. So that here “it takes all the running you
can do, to keep in the same place" [5]. Which also pertains to the ‘strong gravity’ limit of General
Relativity [19, 21]. Compare additionally with the metric induced by a 3-metric on a 2-surface
[25].
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2.2 Eigenvectors and eigenspaces

l

Figure 3:
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Remark 1 The 1-d eigenspace corresponds to centre of mass (CoM), semi-perimeter, radius of
gyration (RoG), or total moment of inertia (MoI), depending on the meaning of the underlying
vector space. This eigenspace is realized for every N ≥ 1 .

Example N = 1 Here this is the sole eigenspace (cyan in Fig 3).

Example N = 2 Here our 2 × 2 matrix’s eigenvectors simply return the symmetric–antisymmetric
eigenvector pair (sky and ivory in Fig 3). This is unambiguous up to signs.

Example N = 3 Here all 3 3 × 3 3-body matrices share eigenspaces. As per the blue and
yellow highlights in Fig 3.

3 Arguing for the particular eigenbasis given
Example N = 2 Here the eigenbasis is fixed up to the sign of the antisymmetric vector.

Example N = 3 But now a 2-d eigenspace is realized. Thus there is now a 1-degree of
freedom family of eigenbases. The particular one exhibited is one of the 3 label permutations of
the eigenclustering (alias relative Jacobi) vectors. This ‘is standard’ for L . And can then be
viewed as inherited by the other two matrices. Implementing how our study of medians, and of
triangle areas, can be taken to less redundantly reside within the relative space that the Lagrange
projector projects constellation space down to.

Remark 2 But given that this specific basis is needed for some interesting results, we should examine
what selection principles underlie this ‘standard choice’ of eigenbasis for L itself.

3.1 Mechanics Selection Principle
Remark 1 In Mechanics, each choice of eigenclustering coordinates corresponds to modelling a
clustering hierarchy. For N = 3 , this takes the following form.

One considers the relative separation vector between some pair of particles, picking out a particular
binary subsystem that our eigenbasis is adapted to the study of. One then discovers that the
following orthonormally completes this eigenbasis. The inter-clustering separation vector between
the binary subsystem’s CoM and the third particle.

Remark 2 N = 3 supports 3 choices for this procedure if the 3 particles are distinguishable.
For there are then 3 distinguishable relative separation vectors. Corresponding to the 3 ways in
which 1 particle can be left out in assigning a binary subsystem.

Remark 3 Molecular Physicists call quantities that are independent of such labelling choices democ-
racy invariants; see e.g. [13, 15, 16, 27, 29, 37, 38, 49] for details.

3.2 Geometry Selection Principle
Remark 1 We pick one eigenvector to correspond to a side vector of the (possibly degenerate)
triangle. And thus to a side of the triangle. Under the most Geometrically-natural assumption of
equal point masses, orthonormality then forces the last eigenvector to be the corresponding median
vector. Since sides and medians are significant notions in Geometry, this choice of basis is privileged.

Remark 2 There is furthermore a residual basis-choice freedom as regards which of the 3 sides
to use. Geometrically corresponds to the threefold cycling manifested by assigning distinguishable
labels to the triangle’s vertices. Indistinguishability of such then realizes an A3 = C3 permutation
group symmetry.
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3.3 Attaining Mechanics–Geometry compatibility
Remark 1 The previous two Subsections can be rendered equivalent.

Remark 2 On the one hand, our Mechanics account makes no reference to particle masses. On the
other hand, our Geometry account amounts to specializing to equal point masses.

Lesser unification The Mechanics account can be restricted to the equal masses.

Greater unification The Geometry account’s median can be generalized to a Cevian. Which has
the effect of incorporating arbitrary point masses [60].

Remark 3 The minimal model for N = 3 ’s democracy transformations underlying the democracy
invariants is again C3 . So Mechanics’ ‘democracy’ is Geometry’s ‘cycle’.

Remark 4 Finally, if mirror images are inequivalent, a further group generator is picked up. It is
in this way that the full permutation group of the 3 labels, S3 , comes to be realized. Whether or
not mirror images are inequivalent is a modelling ambiguity.

3.4 Group- and Representation-Theoretic principles
Remark 1 CoMs enter via L admitting a natural action on the position coordinates. The resulting
eigenbasis is then shared by F . For all that the most natural action of this is on ( sides )2 vectors.
This is not however a discrepancy, given that in Group Theory, natural actions on whichever aspects
of the objects under study is a source of insight.1 It is also straightforward to see that the position
coordinates can be taken to be part of the theory of the triangle.

Remark 2 Furthermore, the position coordinates admit natural 2-body problem subsystems. The
above Physical and Geometrical arguments can be contemplated for one of these as well. Now a
single separation vector suffices. And the label permutation symmetry is S2 = C2 .2

Remark 3 The N = 3 CoM position vector can be envisaged as arising by padding its N = 2
counterpart with a 1 and then renormalizing. This corresponds to passing from a 2-variable
symmetric homogeneous-linear function to a 3-variable one. And furthermore, via this group action
on functions, to inducing a matrix member of a S3 representation from one of S2 .

Remark 4 The N = 3 side vector can similarly be envisaged as arising by padding its fixed N =
2 counterpart with a 0 . This corresponds to passing from a 2-variable pairwise-antisymmetric

homogeneous-linear function to a subcase of its 3-variable counterpart. And so to inducing another
matrix member of a representation.

Remark 5 Along these lines, picking an eigenbasis adapted to a ‘hierachy of subsystems’ comes to
be recognized as a subcase of one of Representation Theory’s most powerful constructs. Namely,
the Method of Induced Representations [43].

Remark 6 We have now done enough to justify the current Article’s shared eigenbasis. By inducing
from N = 2 ’s fixed eigenbasis and then applying orthonormal completion. See [73, 72] for the
next smallest explicit examples ( N = 4, 5, 6 ) of the current Subsection’s method.

Remark 7 Why are CoM notions applicable to Geometry, Statistics and yet further settings? It is
but a first-moment concept. And is realized whenever one’s model has Affine structure [23, 10, 34].

1When Dr Jan Saxl taught me, he often emphasized this point, for which I am very grateful.
2There is now no democracy, nor sides-cycle, though there is still a vertices 2-cycle.
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4 Commutation relations
Proposition 1 a).i)

[ O , L ] = 0 . (12)

ii)
[ L , F ] = 0 . (13)

iii) [51]
[ O , F ] = 0 . (14)

b) More specifically,

L · O = − L = O · L . (15)

L · F = − 2 L = F · L . (16)

O · F = Q = F · O . (17)

Where

Q := 1
3

 5 -1 -1
-1 5 -1
-1 -1 5

 . (18)

Proof See Fig 5. 2

l

Figure 5:
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5 Further interplays
5.1 Emergent medians and their own Heron-type formula
Interplay 1 The Lagrange matrix returns eigenclustering vectors alias relative Jacobi vectors
ρi, i = 1 to n . For N = 3 with equal masses, medians drop out of the calculation (in-

ducing and then orthonormally completing). As ρ2 while the corresponding side vector arises as
ρ1 . This suggests treating sides and medians co-primarily: an eigenclustering perspective. And

leads us to investigate the transformations taking sides to medians and vice versa. We then find
there is an involution J between median- and side-lengths.

Interplay 2 The involution property (11) and the commutation relation (14) – now in J notation
– combine to give a new proof [51, 59] of the following. The medians-data counterpart [6, 24, 33,
40, 51, 74] of Heron’s formula.

For

T 2 = ST · F · S =
(

4
3 J · M

)T
· F ·

(
4
3 J · M

)
=

(
4
3

)2
MT · J T · F · J · M =

(
4
3

)2
MT · J · F · J · M =

(
4
3

)2
MT · J · J · F · M

=
(

4
3

)2
MT · I · F · M =

(
4
3

)2
MT · F · M .

Finally work backwards parallelling the calculation obtaining the expanded Heron quadratic form
from the square root formulation to obtain the following.

Area = 4
3

√
m

∏
cycles

( m − ma ) = 4
3

√
m ( m − ma ) ( m − mb ) ( m − mc ) . (19)

5.2 Rediscovering Hopf’s Little Mathematics
Structure 1
We normalize by division by the MoI I . Which, for equal masses, is numerically equivalent to
division by the square of the RoG. A democratic formula for this for a triangle is [56, 49]

R = a2 + b2 + c2

3 (20)

Article 1’s J is also proportional to this.
The MoI I is also particularly cleanly expressible in terms of the ρi ,

I = ρ2 = ρ1
2 + ρ2

2 . (21)

Then also
νi := ρi

ρ
:= ρi√

I
. (22)

Interplay 3 Using our shared basis, Heron’s quadratic form for the tetra-area T and its 3
eigenvectors can be mass-weighted and normalized to the following. 1 and the 3 Hopf coordinates

αniso = 2 ν1 · ν2 =: hopf1 . (23)

t = 2 ( ν1 × ν2 )3 =: hopf2 . (24)

ϵllip = ||ν1||2 −
∣∣∣∣ν2

∣∣∣∣2 =: hopf3 . (25)

In this way, the eigentheory of the Heron matrix (at least in context of being nested within relative
space) suffices to derive the following [51, 53]. Hopf’s little map [7]

H : S
3 −→ S

2 . (26)
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Exercise 4− Show that the above 3 Hopf quantities indeed square to give 1 . By which they
implement the usual on-S2 condition.

Remark 1 Though we already obtained this on-sphere condition without evoking eigenclustering,
in Article 1. This holding amounts to Smale’s Little Theorem [17] that the space of triangles modulo
similarities is topologically S2 .

Remark 2 For some versions of Hopf’s little map [71], we need to adjoin [51, 49] unit-sphere and
coning maps. Hopf’s Little Map [7, 28, 31, 41, 47] is rather ubiquitous in Geometry and Physics
[20, 8, 9, 11, 18, 29, 38, 42, 71].

Remark 3 The above derivation of Hopf’s Little Map follows from evoking the a single common
eigenbasis of eigenvectors that is adapted to both P and F at once. Namely, the eigenbasis
argued for in Sec 3. In this sense, the working is a double diagonalization. The above ‘nested in
relative space’ comment is implemented by the other matrix involved – L – being the projector
onto this from constellation space.

Remark 4 In the process, the following further Geometrical interpretations for the eigenvectors
drops out [51, 50]. Anisosceleness is equivalently a measure of the extent to which the triangle’s
median is left- or right-leaning. While ellipticity has as a truer name ‘departure from equilateral
proportion’. With reference to its base-to-median length ratio.

5.3 Rediscovering Kendall’s Little Theorem
Interplay 4 Taking the associated Hopf little fibration [31, 35] and projecting down the fibres
[28] returns Kendall’s Little Theorem [26, 39]. That the space of triangles modulo similarities is
additionally a sphere at the level of Metric Geometry. We cover this in detail in [71, 74]. Alternative
derivations involving the chordal metric, or either Geometric or Mechanical reduction, can be found
in e.g. [39, 44, 46, 53].

5.4 And back to medians
Interplay 5 The sides-medians involution’s symmetry explains why medians’ eigenvectors include
their own version of an anisoscelesness and of an ellipticity [58].

Interplay 6 And why medians-as-data exhibit a close analogue of Heron’s formula. This and
Heron’s formula differ by an overall numerical factor of 4/3 . Which [51] identified as the ratio of
eigenclustering (i.e. relative Jacobi) masses. By which the mass-weighted relative Jacobi coordinates
version of Heron and medians-Heron end up identical.

No deeper explanation was previously offered as to why to combine Jacobi coordinates with the
Heron matrix and working in terms of medians. But we have now shown that a common eigenbasis
can be used for all of F , L and J . Eigenclustering coordinates then both constitute a natural
choice, and point us toward treating medians and sides as co-primary. Now not only because sides
and medians enter the equal-masses Jacobi coordinates on the same footing. But also because the
ensuing standard sides- and medians-Heron’s formulae take identical mathematical form in Jacobi
coordinates.

Interplay 7 We can also obtain the Hopf map from the medians Heron formula.

End Note 1 This article has covered a number of ways in which the three matrices F , L and J
interact to form a partial theory of triangles. This is continued in Article 3 at the level of Algebra.

Endnote 2 How special the sides–medians transformation and consequent medians–Heron formula
are is being considered elsewhere [67, 59, 60, 61]. In the process, M(N) is found to be a wrong
guess beyond N = 3 , becoming a poset rather than a chain [62, 63, 73]. Nor is N(N) realized

12



beyond N = 3 . Now with F = N(3) ’s citizen of Kallista accolades [55, 57, 71] getting split
up between a number of different quadrilateral and tetrahaedron objects [53, 64, 66, 65, 68, 69, 70].
In contrast, L(N) = P (N) is a ‘stable anchor rope for the material N -body problems’ [52, 49].
In that it realizes a chain of projectors ∀ N ∈ N.
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