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Abstract
Following Ford, I use algebraic properties of general sets of Combinatorial matrices so as

to account for properties previously observed for 3 matrices that encode many properties of
triangles. In the generic case, there is a 1-d eigenspace and its complement. A split eigenbasis
for which is given by the unit vector, one interpretation of which is centre of mass (CoM)
position, and some basis of relative differences. The equal-mass generalized Jacobi K-vectors
are then picked out as eigenbases for the latter by the induced representation method. More
generally, given any set of compatible Combinatorial matrices, their eigenbases can be taken to
be shared. And, to the exclusion of the zero matrix, their eigenspaces are shared as well.
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1 Introduction
Definition 1 A Combinatorial matrix [1] is a square matrix of the following form.

x + y x . . . x

x
...

... x
x . . . x x + y

 = y I + x 1 . (1)

For our purposes, considering x, y ∈ R suffices.

Remark 1 A. Ford [14] has very recently demonstrated that various properties that I attributed
to [5, 7, 9, 10] the 3 triangle matrices follow purely because these all happen to be Combinatorial
matrices.

Naming and Notation Remark 1 With reference to [14]’s definitions, I term the notation

( x + y , x )K (2)

for 1 Ford’s symbol of the zeroth kind. This is a Wheelerian use of zeroth for ‘most fundamental’.
For this symbol corresponds to the Representation-Theoretically privileged use of irreducibles.

I also introduce the name Ford’s symbol of the first kind for the incipient-block square-brackets
version. And Ford’s symbol of the minus-oneth kind for the trace-reversed block’s angled-bracket
version. Since this reversal is a reflection of the first about the zeroth. I have also chosen to reverse
Ford’s allocation of round and square brackets. So that the block is square (and angular like its
reflection).

Irreducible, block and trace-reversed are respectively truer names.

Structure 1 The 3 triangle matrices are then as follows (dropping the K subscripts since they
are all 3 ’s).

1) The (equal-masses) Lagrange projector alias positions-to-relative separations matrix [8],

P := 1
3 ( 2, -1 ) . (3)

2) The Apollonius involutor alias sides-medians length-exchange involutor [5].

J := 1
3 ( -1, 2 ) . (4)

3) The Heron matrix [3], alias sides-data triangle area formula matrix. And subsequently alias
fundamental triangle matrix F out of its also occurring in many other places in the theory of the
triangle. Which is

F := ( -1, 1 ) . (5)

Remark 2 In particular, [14] showed that many Commutator- and Abstract-Algebra of results for
triangle matrices just follow from their being a set of Combinatorial matrices. The current note
complements this by revisiting their basic Linear Algebra to similar effect.
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2 Combinatorial matrices’ eigenspectrum
Proposition 1 G) A Combinatorial matrix’s eigenspectrum consists of the following.

• := K x + y with algebraic multiplicity 1 , (6)

y with algebraic multiplicity k := K − 1 , (7)

Unless the Combinatorial matrix is of one of the 3 following exceptional kinds.

0)
x = 0 = y , (8)

for which the sole eigenvalue is

0 with algebraic multiplicity K . (9)

1)
y = 0 ̸= x , (10)

for which the sole eigenvalue is

y with algebraic multiplicity K . (11)

U)
K = 0 , (12)

for which there are no eigenvalues at all.

Remark 0 The generic case G) is proven in e.g. [6]. Without mention however of the 3 excep-
tional cases. Whose conceptual names are the unmatrix U , the zero matrix O and the matrices
proportional to the identity. Which, collectively constitute the isotropic matrices. The cases 0) and
1) can for some purposes be jointly summarized by I)

k I . (13)

Though not as regards eigenspectra, since the k = 0 and k ̸= 0 cases then differ as stated
above. See also Fig 1.b) for further details.

The more often omitted (or even unimagined) case U) is isotropic since all directions being the
same is satisfied when there are no directions. The unmatrix then realizes the uneigenspectrum: an
incarnation of the empty set consisting of no eigenvalues.

Remark G.1 Also for K = 1 , k = 0 . One would then omit saying that y occurs with
algebraic multiplicity 0 .

Remark G.2 For K ≥ 2 , we have a k | 1 partition of the underlying vector space by eigenvalue
into the corresponding eigenspaces.

Remark G.3 K = 3 is minimum for this partition to be into a larger piece and a smaller piece
(Fig 1.c). And thus to have a dimensionally-nontrivial eigenspace. These features clearly persist for
all subsequent N .

Remark 2 The previous three remarks are all for case G). For case I), the eigenspace is unsplit (a
1-piece partition). While for case U), the eigenspace is the unpartition of the empty set.
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3 Combinatorial matrices’ eigenvectors
Proposition 2 With reference to a cover by some of the above-defined cases, a Combinatorial
matrix’s normalized eigenvectors take the following corresponding forms.

G) The normalized unit vector. Alongside any normalized basis choice of relative-difference vectors.

I) Any normalized basis for RK will do.

U) The uneigenbasis consisting of an empty set’s worth of eigenvectors.

Proof G). For the distinct (‘principal’) eigenvalue, the eigenvector equation is

( −k x , x )K · x = 0 . (14)

Which is solved by
x1 = ... = xK = 1 . (15)

Finally divide by the corresponding normalization factor√√√√ K∑
i = 1

12 =
√

K . (16)

For the other eigenspace’s eigenvalue,
x 1 · x = 0 . (17)

Which is solved as claimed.

I) The eigenvector equation now reads

( 0 , 0 )K · x = 0 . (18)

Which places no restrictions on what x can serve as an eigenvector.

U) Now there is no eigenvector equation, but no vectors to restrict either. The restriction of the
empty set by the ( empty set of equations ) is of course just the empty set again. 2

4 Some particular eigenbases
Structure 1 A particular set of eigenbases of relative-difference vectors is provided by the relative
Jacobi vectors [2], subsequently alias eigenclustering vectors [11].

For K = 1 , there is just an empty set of such.

While for K ≥ 2 , these are always nontrivially realized, and always carries a coordinate-label-
choice multiplicity.

For K ≥ 4 , there is a network ambiguity as well, starting with the well-known ‘Jacobi-K versus
-H ’ dichotomy [11].

Together with the normalized unit vector, each of these sets is enlarged to the corresponding (abso-
lute) Jacobi vectors.

Remark 1 Hitherto, in the Mechanics literature, the Jacobi vectors have been taken to be eigenbases
for the Lagrange matrix. Which exists for any N -body problem in any Rd . In this setting,
the normalized unit vector is the CoM position vector. And the relative differences are linear
combinations of relative separations, whose arena is relative space [8].
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Remark 2 In the case of the triangle, these eigenvectors were subsequently found to be shared by
J and F . My initial interpretation for this was that P brings in the Jacobi vectors. Which

subsequently happen to be shared by J and F . But it has now become clear that some aspects
of P -primality are a misconception, along the following lines.

Remark 3 Rather, any Combinatorial matrix can be taken to have a CoM-relative split eigenbasis.

Remark 4 Eigenclustering eigenbases are only a small subset of these (Fig 1.a).

Remark 5 There is furthermore a well-defined way of picking out specifically the generalized K-
Jacobi vectors alias straight-path eigenclusters [11]. Namely that Ford’s padding operation supports
an induced representation construction. The padding operation extends size-K Combinatorial ma-
trices to size-( K + 1 ) such. While construction supported in turn pads the unnormalized vector
of 1’s with another 1 . And the existing relative Jacobi vectors with one 0 each. The final
eigenvector is then uniquely fixed up to sign by orthonormality.

This rests on the permutation group SK acting on K objects for each K . And the subgroup
inclusion

Sk < Sk + 1 = SK . (19)

The Lagrange projector version of the above argument recently featured in [9]. We thus arrive at
the following.

5 Sharing eigenbases and eigenspaces
Proposition 3 Any Combinatorial matrix can be naturally equipped with a generalized-K eigen-
clustering eigenbasis.

Naming Remark 2 By which combinatorial-matrix eigenvectors, or for short eigencombinatorial
vectors, is in turn a truer name than generalized-K eigenclustering vectors.

Proposition 4 Any generic set of compatible Combinatorial matrices can be taken to share eigen-
basis. If none of them are isotropic, then they additionally share the underlying k | 1 partition into
eigenspaces as labelled by eigenvalue (Fig 1.c).

Proposition 5 All combinatorial matrices are minimally-minimal. Meaning that their minimal
polynomials are of the lowest-possible order.

Exercise 1 Prove this.

Corollary 1 Since they are a subcase of a set of compatible Combinatorial properties, the 3
triangle matrices enjoy Proposition 3 to 5’s properties.

Open Question 1 For P , the eigenclustering vectors are picked out by networks of subsystem
CoMs. What does this interpretation generalize to if considered instead for an arbitrary generic
Combinatorial matrix?

[This provides a sense in which P -primality has not yet been demonstrated to be a misconcepetion!]

End Note The following remain of merit [12, 13, 15, 17]. Which sets of compatible quadrilateral ma-
trices commute, form multiplicative commutative monoids, share eigenspaces and share eigenbases.
For here not all of the matrices in any of these sets considered are Combinatorial.
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