4-Body Problem: Ptolemy—-Lagrange Algebra
E. Anderson*

Abstract

We consider algebras generated by the following 4 4-body 4 X 4 matrices. The equal-masses
Lagrange matrix L , which can furthermore be viewed as a projector P . And the 3-cycle of
Ptolemy matrices Pt, , which are furthermore involutions, J, .

We observe that P, J, and the identity matrix are linearly dependent. That all of these commute.
And that the plain matrix product algebra is a commutative monoid. Which is the direct product of
the Ptolemy realization of the Klein 4-group and the single projector’s minimum nontrivial commu-
tative monoid. And that while a common eigenbasis can be found for P and any one of the J, ,
the eigenspaces do not coincide.

Our common eigenbasis requires specifically an H-eigenclustering network. Motivating us to collect
further pros and cons for H versus K : the sole alternative supported by N = 4 . We finally
compare our results with those for the previously considered combination of the Lagrange projector
and the Apollonius sides-to-medians-involution for 3 bodies.
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1 Introduction

1.1 The Lagrange matrix
The 4-body equal-masses Lagrange matriz [7, 24, 42] is [36]

3 1 1 1
11 3 a1 1
L=3114 a1 3 1| (1)
1 1 1 3

This can also be viewed as [42, 36] a projection alias projection operator shortening to projector P .
Corresponding to the condition

P> =P (2)
holding. Specifically, it is the projector from the constellation space
q(d, 4) = (R?)" = R*¢. (3)
To the relative space
Relative(d, 4) = (R?)" = R>?. (4)

For d the spatial dimension.

With action sending 4 position d-vectors to 3 linearly-independent relative-separation d-vectors. By
which position-separations matriz is another, in some sense truer, name for it.

A much wider audience will have come across projections of this kind in the context of projecting out the
centre of mass position from the N-point-or-particle configurations.

P furthermore admits an action on the quadrilateral’s side-length vector
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1.2 The Ptolemy sides matrices

The first Ptolemy sides matriz is [52]

Pt; =

- (32)

In the sides-diagonals split formulation [53] of Ptolemy’s First Theorem and inequality [2, 17, 18, 29, 20,
23, 25], this matrix encodes the sides piece. It is presented in the same sides basis as (5) for P . With
use of 2 x 2 blocks in its last expression, where [ denotes identity matrix.

o = o o
= O O O
o O o
oo = O

The following opposite side-pairs basis is more convenient for it.
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For here it takes rather the following form [53].

0 1 0 O
o 100 n) (2 .
0 0 1 o0
Where
T = (? (1)) (9)

the sole transposition matriz supported by the 2-object set. Which is more convenient since it is now
blockwise-diagonal with all blocks of size 2 , trivializing the elucidation of its eigentheory.

The second and third Ptolemy sides matrices are the following 3-cycles [53] of (6).

0 0 0 1
o oo 1 0| (o7
Pb=1po 1 0 o0 <T|®> (10)
10 0 0
0 1 0 0
|1t 0 0 0|  (T]O
Pts=1po 0 0 1 _<®|7'>' (11)
0 0 1 0

These encode [53] the numerator and denominator of the sides piece in Ptolemy’s second Theorem [14,
15, 32]. Observe that the above basis change switches Pt; and Pts’s explicit forms while leaving
Pty invariant. Let us jointly denote these 3 matrices by Pt, .



All Ptolemy matrices are involutions. Meaning that they obey
JE=1. (12)
While not being the identity matrix [ itself. We thus reissue J, as notation for the Pt,
We also include the identity among our matrices for the following reasons.
Firstly, it features in the definition of involution.
Secondly, it has the property of commuting with all compatible-sized matrices.

For some purposes, we view this as Pt , indexing all 4 together by Pt, . We also permit the notations
Jo and J, by not strictly enforcing the second line in the above standard definition of involution.

A truer name for Ptolemy-sides matrices is sides-pair-transposition matrices. Meaning selecting a pair
thus fixing the other, and then transposing each.

1.3 Outline

In Sec 2, we show that P and J, are actually an LD (linearly dependent) set. That all of these
commute. That while a common eigenbasis can be found for P and any one of the J, , the eigenspaces
do not coincide. And that the plain matrix product algebra is a commutative monoid [28, 31]. Which is
the direct product of the Ptolemy realization of the Klein 4-group and the single projector’s minimum
nontrivial commutative monoid.

In Sec 3.1 these results are compared with those for the 2 3-body 3 x 3 matrices P and J . For
P the corresponding Lagrange projector. And J the Apollonius involution [35, 43, 44] between sides
and medians. Encoding the cycle of [23, 1] Apollonius Median-Length Theorems [1, 34, 12, 41]. Which
matrices, and relations, are provided for ease of comparison in Appendix A.

Our common eigenbasis result requires specifically an H-eigenclustering network. Motivating us to
collect in Sec 3.2 pros and cons for this and over the sole alternative supported by N = 4 : the
K-eigenclustering network. Eigenclusterings have hitherto often been referred to as (relative) Jacobi
coordinates [10, 21, 42, 36, 45, 60].



2 Ptolemy—-Lagrange Algebra

2.1 LD relation

Remark 1 A priori, our matrices are all 4 x 4 and symmetric. And thus belong to an arena Sym,
with 10 degrees of freedom (d.o.f.).

Remark 2 The Lagrange matrix can however be reformulated as follows.

30 -7 -0 - T
L‘<-n73n7>' (13)
So more specifically our matrices are all of the form
M - al + BT |~ + 67T . (14)
° |€|] + T

The arena M of which has just 6 d.o.f.

Remark 3 5 matrices belonging to an arena with 6 d.o.f. are generically linearly independent (LI).
Our particular 5 are however linearly-dependent (LD). This is since they obey the following linear
relation.

Lemma 1
L =1- (Pt). (15)

In words,

( 4-body Lagrange matrix ) = ( identity ) — ( the average Ptolemy matrix ) .

With specific reference to the 4-average.

Proof By another rearrangement,

Where 1 is the matrix of 1's.
But also adding up,
> pt, = 1. (17)

Eliminate 1 between these:

40 - L) = 23: Pt, . (18)

w=20

Divide by 4 and finally evoke the definition of average. O

2.2 Zero-commutator algebras formed

Proposition 1 i) [53]
[Pt,, Pty] = 0. (19)

ii)
[Pt,, L] = 0. (20)

Exercise 1~ Prove this directly by evaluating the matrix commutators.



Proof 2 of ii). Sub Lemma 1 in to obtain
13
[Pt,,1 — (Pt)] = [Pt,,1] — 1OZ::I[PtO,PtO,] = 0-0=0. (21)

Where the second step is by the definition of average and use of linearity. While the third step uses
Proposition 1 alongside that everything commutes with the identity. O

Remark 1 ii) is thus not an independent commutation relation. Thus i)’s discrete zero-commutator
algebra of 3 Ptolemy matrices suffices for the joint study of the Lagrange and Ptolemy matrices. Though
L and 1 or 2 of the Pt, are more suitable for some applications.

Keeping 2 maintains the maximal algebra.

While dropping Pts and Pts corresponds to combining working on relative space with considering a
single Ptolemy inequality.

In these ways, ii) does see some use.
Remark 2 So overall this Subsec yields 2- or 3-generator zero-commutator algebras. These can be

viewed as very basic Lie algebras [19]: no nonzero structure constants. Of linear combinations (LCs) of
our matrices. Subsec 2.7 provides a distinct interpretation.

2.3 Projection and involutions
Proposition 2 [53] All Ptolemy matrices are involutions.

Remark 1 [53] consider a separations and a diagonals Ptolemy matrix as well, so Proposition 2 covers
5 matrices.

Remark 2 Due to this, and to equal-masses Lagrange matrices being projectors, let us rewrite the
previous Subsecs’ equations in Algebraic rather than Geometric form.

[JoaJO’] =0. (22)
[Jo, P] = 0. (23)
Which is not independent since
P=1-(J). (24)
Also
40 — P) =1. (25)
And

]l:zs:szﬂ+ZJo. (26)



2.4 The Ptolemy—-Lagrange Eigentheory

Remark 1 See Figs 1 and 3 for this. And e.g. [53, 61, 60] for the notions and conventions used.

Remark 2 Observe in particular that while shared eigenvectors can be found (for instance as exhibited),
the eigenspace structure is not shared. For P has a 3 + 1 split eigenspace. While the J, have
2 + 2 split eigenspaces. This involves taking the indicated LC to pass from row 4’s simple sparse

block-aligned eigenvectors to row 3’s shared ones.

Algebraic properties of current Article's 4-body matrices
Matrix Eigenvalues Rank Nullity SMath Sphys Sphys-detail Notes
0 1
Degenerate,
Lagrange 1 3 with elliptic
projection 3 1 3 2 +++0 nondegenerate Projection
L=P 1 3 sector
) ] Commute
Diagonalizable with
| | each
- other
Ptolemy
o 2 2 -
sides 4 0 2 0 oo Ultra- Involutions
involutions 2 5 hyperbolic
pt,=J, ~
1 1
Ao Eigenvalue
a, | Algebraic
Key
Ye |Geometric | multiplicities
M | Minimal
|
Figure 1:
K- and H- eigenclusterings
Key
/ 5 Point-or-particle
‘ | e Eigenclustering vectors
(—\ — <o
CoM (centre of mass)
of M points-or-particles
|
Figure 2:




Eigenvectors and eigenspaces
Matrix Some eigentheory
1 1 1 1 K-
111 N L1 N eigenclustering:
2|1 Viz | 1 V6 | -2 V2| 0 aligned
1 -3 0 0
Lagrange A
projector LC
L=P Y
1 1 0 1
1 g 1{o 1|1 , lH-t A
z z |1 % | o eigenclustering:
2 (1 2 -1 V2 1 V2 aligned
1 -1 - 0
Eigenvalues 0 1
Geometric
= 4
multiplicities ! T 3 ]
T T
Cigo(P) & Cig,. (P) = Cig(P)
Eigenspaces | |
R D R3 = R
|
1 1 0 1
111 1)1 110 1] ,
2l oz [E|] Ao Alned
1 -1 -1 0
Ptolemy $
) 51des. LC
involution
Pty = J,;
0 1 0 1
1 0 1 1 110 1 [-1 Sparse,
VAR vzl o VoA V2o block-adapted
1 0 -1 0
Eigenvalues 1 -1
Ge(zm.et'rl'c 5 + 5 — 4
multiplicities 1 1
1 1 -
Cig, (J3) (&) Cig_ (J3) = eig (J3)
Eigenspaces | I
RZ e RZ — IR4
1. I 1
Figure 3:

Remark 3 Also observe that we have attained compatibility within the Lagrange matrix’s H-eigenclustering
4 ’s sole alternative to this network — the K-eigenclustering of Figs 2.a) and
the top row of Fig 3 — cannot accommodate such a compatibility. This is because a 2-d eigensubspace
is involved in the transformation moving between H and K . While for the Ptolemy matrices, one of

network (Fig 2.b). N

the 2 eigenvectors required for this is partitioned off from the other.

Exercise 27 Work out both 2-way LCs in Fig 3.




2.5 Trace—tracefree decomposition

Structure 1 1 admits the following irreducible split.
1=01+T. (27)

For trace part 1 and tracefree part
T=1-1. (28)

Proposition 3 i) Making the matrix of 1 ’s the subject,

4 3
113<P+ ZJO>. (29)

o=1
ii) Making the trace irreducible the subject,

- %(413 — ). (30)

iii) Concurrently making the tracefree irreducible and the Ptolemy-involutions-sum the subject,

3
T= > J. (31)

iv) Making the Lagrange projector the subject,

P:I]—i]l: (31 — T), (32)

1
4
now in the sense of 3-average.

Remark 1 iii) is particularly nice as the isolation of an irreducible also isolating one of our Geometrical
objects.

Exercise 3~ Prove Proposition 3.

2.6 The Ptolemy-Lagrange multiplicative algebra

Remark 1 In considering plain matrix multiplication rather than commutator product, incorporation of
+ is not obligatory. We can thus ask what algebra is generated by joint consideration of the Lagrange
and Ptolemy-sides matrices.

Preliminary Structure 1 We already know how the Pt, behave in isolation. Namely, Everard and I
[53] showed that they form the Klein-4-group Vy = Cy x Cy (Fig 1l.a). Incidentally, this means that
only 2 of them are independent multiplicative generators. According to

Jo Ty = Jor . (33)

Where o # o and 0" is the remaining index value. It is furthermore entirely arbitrary which 2 are
taken to be the generators.

Preliminary Structure 2 And how the Lagrange matrix generator behaves by itself [44]. The times
table is now as per Fig 1.b). Groups have the property that each element features precisely once in any
given row or column. Thus this times table immediately diagnoses that our algebra is not a group. All
commutative group axioms hold bar the inverse property, signifying that we have a commutative monoid
[28, 31]. The inverse property fails since nontrivial projections have nonzero kernel, and are thus not
invertible. A consequence of this is that cancellability fails:

PP=P # P =1.



b) Lagrange projector's a) Ptolemy-involutions' V, group)|
commutative monoid M, [Anderson-Everard 2019]
I Y S I A
1|pP I IO 8 9 S5 9
1({0|P 0N O P T O /0 O 4
P|P|P Ll L1 |4
S| L L]
9 Closure-enforced 8-algebra § | )  Candidate 5-algebra * Ptolemy-
(a commutative monoid) Lagrange-
Sanchez
algebra
0 (Ji || Js| P |PJ|PT,|PJs SN
Ly | Ji|Jy| 5| P |PJ|PJ,|PJs S I 1 O S I A 4
Jije |l ||, P |PJ;|PJ, I T Y 8 Y S5 Y/ I o4
SHle|le |l |J PJ;| P |PJ, Jile |l ||,
Js|oe|e|e]l PL\PJ| P Sle|le |l |J
Ple|eo|e|e|P |P]|PLP J;|eo|oe|e]lI
PJ/|o|o|o|o|e]|P|PsP Ploe|oe|o]|o|P
PJj]oe (o |o|eo e ]|e|P|PJ
P/joe|o|o|o o 0|0 ]|P
e) Direct product structure of S
0 (]| | 5| P |PT|PT,| P,
0|0 g || 5| P |PI|PL| P
J\ S| US| |PI| P | PG| PT, O T I A S O 8
L LI | 1| T |PL|P| P | P, I I O A [ S R A8 |01 |P
A NARSEARRIZAVZAIZAN S = Ji| | US| X [ 2
P | P |PJ,|PJ,|PJ;| P |PJ,|PJ,|PJ; Ll L4 P|P|P
Py \PJ,| P |P1|PL,|PJ,| P |PI|PI, AN ANAN
PJ,|\PJ,|PJ;| P |PJ\|PJ,|PJ;| P |PJ,
PJ;|\PJ;|PJ\|PJ,| P |PJ;|PJ,|PJ,| P
Ky V, X M,
Ik
Figure 4:

More specifically, the identity and a single nontrivial projection form the smallest commutative monoid,
My



Proposition 4 [Anderson—Sanchez 2019] i) P and J, generate the 8-element commutative
monoid S whose times table is exhibited in Fig 1.c).

ii) Furthermore,

S:‘/ALXMZZCZXCQXMZ. (34)

Proof 0) Commutativity = the times table is symmetric about its lead diagonal.
1) The first row is always taken care of by the identity property.

2) The yellow and blue portions of the incipient algebra’s diagonal (Fig 1.d) follow by the involution and
projection properties respectively.

3) The orange wedge follows from (33).
4) The last column discovers 3 perms of P (red). This gives 3 new columns to work out.
5) Involution, (33) and projection deal respectively with the new yellow, orange and blue entries.

6)
p.J, P-J, =P J2.

So finally projection and involution finish off the diagonal’s extension (green).
This obeys all commutative group axioms bar the inverse property, and is thus a commutative monoid.!

ii) Reconceptualize our emergent consistent closure-enforced 8-algebra independently of how we obtained
it. Ditch the bullet shorthand enabled by 0) since it is not useful in seeking for product structures. With
the generators ordered as shown in Fig 4.d), quarter the table into squares (LHS of Subfig e). The blue
square’s entries are each P - the white square’s corresponding entries. Which is itself the above Ptolemy
sides involution realization of V4 = C5 x C5 . But this meets the definition of direct product algebra,
via the shading in the RHS of Subfig e). O

Remark 2 Blue now indicates projector action. The fourth square’s blue is then really
double-blue = blue by the projection property.

2.7 Ptolemy-Lagrange zero-commutator algebras revisited

Now that we are wearing the Abstract Algebra hat, another interpretation for these is as follows.
They close because all products return the zero matrix O . This is automatically included, since we are
working with a R? or R® vector space of LCs of our matrices. For which O serves as zero.

They are commutative and associative. But do not enjoy the identity property, since commutation with
zero returns zero rather than the original element. Nor are they cancellable. Since for

A# B, [A,C] = [B,(C] failstocancel downto A = B. (35)

Thus they constitute commutative semigroups [31] (Proposition 5).

1Given that P is among the incipient generators, this is as much as can be hoped for.

10



3 Scholium

3.1 Comparison with Apollonius—Lagrange algebras

Remark 1 The above generalize the commutator and plain-multiplication algebras [44] formed by the
following. The 3-body 3 x 3 Lagrange projector P [42, 36] and a single Apollonius sides-medians
involution J [35, 43, 44]. Which we outline in Appendix A for ease of comparison.

This is a more minimal example of a zero-commutator algebra, commutative semigroup, and commutative
monoid. This exhibits no LD, so the zero-commutator algebra possesses 2 generators. Though the
single projector is an even more minimal example of commutative monoid. Our example is however the
minimal example of a nontrivial direct-product commutative monoid. In the sense of being the smallest
direct product of two nontrivial factors. That carry between them the minimum amount of nontrivial
commutative-monoid departure from a commutative group.

Remark 2 But the direct analogue of Apollonius’s Theorem for 4 bodies is either Euler’s Quadrilateral
Theorem [5, 26, 27, 30, 32, 46] for the Newton line [4, 9] interval’s length. Alias the crossbar length of
the H-eigenclustering. Or its K- counterpart [47]. For N = 4 exhibits this eigenclustering network
ambiguity.? And yet these give 3- and 6-matrices respectively [46, 47], which are not compatible with
the Lagrange 4-matrix.

Remark 3 Instead, Ptolemy’s results surprisingly turn out to be able to take over the role of partnering
the Lagrange projector with involution matrices. These results are of a conceptual type for which

N = 4 is minimum. For they concern diagonal information being controlled by side information. And
N = 4 is clearly minimum for notions of diagonal to be supported. Or equivalently for separations
and sides to be non-coincident notions, since some separations are now diagonals.

Pointer 1 For triangles, the fundamental triangle matrix F enters as a third 3 x 3 matrix. E.g.
from Heron’s formula [5, 22, 35], the cycle of cosine rules or the cycle of triangle inequalities [40]. Now
the triangle’s matrix theory picks up its own LD [44]:

F=A-L=J-P. (36)

With plenty of consequences (Appendix A.3, [44, 56]).

Analogously extending the 4-body Lagrange and Ptolemy-sides matrix algebra via the content of quadri-
lateral area formulae picks up some multiplicity [13, 38, 39, 59, 54].

Example 1 For Brahmagupta’s cyclic-quadrilateral area formula [3, 18, 20, 23], a competing poset of
zero-commutator algebras arises [53]. In the sense that the following 2 patches are incompatible.

Firstly, the Ptolemy vector of matrices (whether or not with 1 component exchanged for the Lagrange
matrix).

Secondly, one Brahmagupta factor matrix and the unique Ptolemy matrix Pt; that is commutator-
compatible with it.

Example 2 For Bretschneider’s second convex-quadrilateral area formula [11, 13, 16, 20, 23], full com-
patibility ensues [55].

Remark 2 The Geometrically-meaningful sum (or average) of the 3 Ptolemy sides matrices has
Representation-Theoretic dual nationality as an irreducible Proposition 3.iii). N = 3 does not possess
a directly analogous result.

When viewed as a difference, F' does however enjoy Geometric, Algebraic and Representation-Theoretic
triple nationality [44]. Namely, it is all of the difference of Geometry’s Apollonius and Lagrange: the first

2See [8, 27, 33, 46, 47, 51, 48, 49, 50, 45, 57, 58] for development of truer names for these lengths, networks and Theorems.
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form of (36). Of Algebra’s involution and projector: the second form of (36). And of the 2 irreducibles
by the last form in (48). See Sec 3.1, [44] and [56] for yet further routes to F' .

So on the one hand, N = 3 supports an exhalted relation, but only once its area formula has entered
the fray.
On the other hand, N = 4 ’s involutions support one by themselves.

Remark 4 For the 3-body Apollonius-Lagrange matrix algebra, both eigenvectors and eigenspaces are
shared (Fig 6). Thus the current Article’s shared eigenvectors and yet not shared eigenspaces result is
minimum at N = 4 for this effect to occur in the N-body and Flat Geometry contexts.

Pointer 2 There are further eigenvector alignment and eigenspace non-alignment effects among the above
extensions by quadrilateral area formulae’s matrices.

3.2 H- versus K-eigenclustering

Remark 1 It is well known that each of H- and K-eigenclustering models a different Physics, Geometry,
Statistics... situation.

Namely, the H is adapted to double-binary configurations. Such as 2 planet-moon subsystems. Or 2
hydrogen atoms.

While the K is adapted to the nest: a binary within a triple subsystem. Such as a tight binary pair
of stars with a more loosely-bound third star and finally the system’s planet. Or the nuclei and then
alongside the bound electron of the molecular hydrogen ion H;r , and finally a loose electron.

Remark 2 Some further technical reasons to pick H or K arising from the current program are as
follows.

Motivation 1 for H In studying the 4-body problem, the Ptolemy inequality plays a major role
and the Ptolemy Theorem an occasional role. Then picking the H- rather than K-eigenclustering is
preferable due to permitting a fully shared basis of eigenvectors. For K | at most the centre of mass —
here alias perimeter — and one side-pair difference eigenvectors are shared: just a 50% success rate (Fig
3).

Motivation 2 for H FEuler’s Quadrilateral Theorem for the H-eigenclustering is nicer than its K-
counterpart. For the H case exchanges crossbar length for separation-length information. While the K
case only exchanges an aggregate of 2 stroke lengths — spike and handle [33, 47], for separation-length
information.

Motivation 1 for K Every N hasa K corresponding to the simplest tree graph available: the path
Py — 1 . Corresponding to adding points-or-particles one at a time. The H instead corresponds to
starting by bringing in as many pairs as possible.

Motivation 2 for K One can work systematically with each N ’s K for many purposes [48, 57]. But
for odd N , a point-or-particle is left over after bringing in as many pairs as possible. Leading to even

and odd cases of H often needing to be treated separately [45, 50].

Motivation 1 against H Forr some purposes, the H is not extremal; in particular it does not always
pick out maximal symmetry [58].

Remark 3 In view of the previous three items, arbitrary-N H is thereby a less systematically tractable,
less unique and less mathematically distinguished at the level of eigenclustering.
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A Apollonius—Lagrange algebra

A.1 The matrices
Structure 1 The equal-masses 3-body 3 X 3 Lagrange matriz ([42, 36, 43, 44])

Lf2 1
Le=g(1 2 1]. (37)
112

Which corresponds to placing an equal mass at each vertex of the triangle. This is again a projector of
the type detailed in the Introduction, so we also denote it by P .

Structure 2 The Apollonius matriz [35, 41, 43] is

L2 2
0=712 1 2|. (38)
2 2 -1

This arises from passing from sides to medians by the cycle of [23, 1] Apollonius Median-Length Theorems
[1, 34, 12, 41]. Rescaling to
4

we obtain an involution, which we thus additionally Algebraically denote by J . Specifically
1 (! 2 2
A=J = 3 2 -1 2 (40)
2 2 -1
This is the Apollonius or sides—medians involution.
Proposition A [43]
[P,J] =0. (41)

Which can be viewed as a trivial (commutative) Lie algebra on 2 generators.

A.2 Their eigentheory
This is provided in Figs 5 and 6 .

Algebraic properties of current Article's cyclic quadrilateral matrices

Matrix Eigenvalues Rank Nullity Shath SPhys Sphys-detail Notes

0 1
Lagrange 1 2 D‘egene‘rat.e
projector 2 1 2 2 ++0 with elliptic Projection

L=P 1 2 nondegenerate
sector
Commute
1 1 .
Di lizabl with

each
other

Apollonius

d 3 0 2 1 - Hyperbolic Involution
involution
J

Figure 5:
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Eigenvectors and eigenspaces
Matrix Some eigentheory
Lagrange 1 1 1 1 1 1
projector — | 1 — | -1 — | 1
L=P V3l V2 \ o VB
Eigenvalues 0 1
Geometric o
multiplicities ! T 2 N 3
1 1
Cigo(P) @ eig (P) = eig(P)
Eigenspaces | |
R & R = R
Apollonius 1 1 1
sides-medians L 1 L 1 L 1
involution V3 1 V2 0 \/6 2
J
Eigenvalues 1 -1
Geometric -
multiplicities ! T 2 N 3
1 1
eig (J) & eig_(J) = eig(J)
Eigenspaces | |
R & R = R
1 ] ]
Figure 6:
A.3 Triangle matrices’ block formulation
Proposition B i) Making the matrix of 1’s the subject,
1 =3(J + P). (42)
ii) Making the trace irreducible the subject,
1l =J 4+ 2P. (43)
iii) Making the tracefree irreducible the subject,
T=2J + P. (44)
iv) Making J the subject,
2 1
J=-1-1= (2T - 1). 45
- S(27 — 1) (45)
v) Making P the subject,
1
P=1- -1 = g(QI]—TT). (46)
vi)
1 1
J+P=-1= -(14+4T). (47)
3 3
vii)
J-P=1-201 = T-1. (48)

Remark 1 These last two serve as adapted variables [44]. With the second of these moreover constituting
one of the many routes to the fundamental triangle matrix F' ; see Sec 3.1.
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A.4 Their multiplicative algebra

a) Involution's b) _ Projection’s
group G, commuting monoid M,
11J I |P
1 4 I I Y ¢
J|lJ|1 P|(P|P
Lagrange-
d) Apollonius-Lagrange ¢) Candidate Aﬁfg'l?,ﬂ"s
commuting monoid 4 3-algebra
[Anderson 2018]
i1 {J|P|-P [ P
Ij{0|{J|P|-P t{0|J|P
J]e |1 P J]le |l .
o (o |P |-P o|eo | P
-Ple|oe|eo|P
€) Direct product structure of 4
I |J|P|PJ
L0 |{J|P|PT 0|J I|P
J|J |1 |PJ|P = I I Y 4 X I{0|P
P|P|PJ|P |PJ JlJ]|1 P|P|P
PJ|PJ| P |PJ|P
A = G X M,

Ik

Figure 7:

Lemma A [43, 44] Any involution and the identity form the commutative group Cs .

Lemma B [44] Any projector P and the identity form the commutative monoid

M
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whose times table is in Fig 7.b).

Proposition C [44] i) Together, P and J generate 4-element monoid, whose times table is in Fig
7.d).

ii) Furthermore, this is the product commutative monoid (Fig 7.e)
A= Cy x M,y. (49)
iii) The two forms displayed are equivalent by the relation
P.J=-P. (50)

Proposition D The Apollonius-Lagrange zero-commutator algebra can also be viewed as a 2-generator
commutative semigroup.

Exercise 4 i) Derive (50).

ii) Express (33) in terms of the epsilon tensor, paying careful attention to what spaces all indices involved
reside in.

iii) Prove Proposition B.
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