Ptolemy’s Theorem and Inequality:

from a Linear Algebra point of view
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Abstract

We cast Ptolemy’s Theorem and inequality in terms of a quadratic form Pt . Consisting of the
separation-lengths 6-vector twice contracted into a matrix Pt . Which is an involution.

We also give the corresponding eigentheory; one of the semi-perimeter and the separimeter can be
chosen among the eigenvectors. Pt is moreover indefinite, with Ptolemy’s inequality correspond-
ing to spacelike 6-vectors. And Ptolemy’s Theorem to the bounding case of null 6-vectors. This
description parallels how the Heron form distinguishes between zero area and positive area, while
prohibiting negative-area separations magnitude data.

With Ptolemy’s Theorem holding for cyclic quadrilaterals, we abstract a quantifier of acyclicness from
Pt . We finally point to many extensions of the current Article’s material.
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1 Introduction

Quadrilateral notation

Figure 1:

Theorem 1 (Ptolemy) [2] Let ABCD be a cyclic quadrilateral. Then
|AB||BD| = |AB||BD| + |BC||AD|. (1)

Let us next bring in Fig 1’s cyclic notation for the side lengths, as supplemented by the diagonal lengths.
Then the above equation tidies up to the following expression.
ef = ac + bd. (2)

Remark 1 Conceptually,

H (diagonals) = Z H(opposite sides) . (3)

For which
r =

provides notation, the first piece nonstandard, referring to diagonals crossing, while the second piece is
standard. Let us postpone conceptual discussion of [ to [47].

Remark 2 This Theorem’s converse is also true (if we choose for now to ignore degenerate quadrilaterals).
Le. if Ptolemy’s condition (2) holds for a non-degenerate quadrilateral, then it is cyclic.

Remark 3 Styles of proof for [52] Ptolemy’s Theorem include, firstly, by use of similar triangles [14, 15,
29, 23]. Secondly, by an auxiliary-point construction [19]

Thirdly, by use of trigonometry’s two-angle formulae. To which Ptolemy’s Theorem is in fact equivalent.
Indeed, Ptolemy used this Theorem to build what we would now call Trigonometric tables for Astronom-
ical use [2]. For Ptolemy was his epoch’s leading Astronomer [9], in fact quite possibly the whole classical
period’s leading Astronomer.

Fourthly, by use of Inversive Geometry [15], which works since Ptolemy’s Theorem indeed turns out to
have inversive significance. Fifthly, by use of Projective Geometry techniques, such as a projection [35],
cross-ratios [19] or Mobius transformations [25].

Exercise 1 a) Prove the converse of Ptolemy’s Theorem using basic Euclidean Geometry.

b) Demonstrate equivalence between Ptolemy’s Theorem and
sin(fa + f) = sinacosf + cosasinf.

¢) Deduce Stewart’s Cevians-length Theorem [5, 16, 23, 33, 35, 44] as a Corollary of Ptolemy’s Theorem.



2 The Ptolemy quadratic form and matrix

Theorem 1’ Ptolemy’s Theorem can be recast as
Pt =7 -Pt-7 =0. (4)

For separation lengths 6-vector for the quadrilateral,

a a
b c
r o= ¢ in standard basis, or b
a d ’ d
e e
f !
in paired-separations basis.
Ptolemy matriz
0 0 0 T 0 0
Pt = 0 0 0 in standard basis, or 0 T 0
o 0 -7 0 0 -7

in paired-separations basis.

Where in turn [ is the 2-d identity matrix. And

0 1
T o= ( 0l )
the sole transposition matriz supported in 2-d .

Finally, Pt is the Ptolemy quadratic form.

Remark 1 Since we are equating to zero, we have absorbed a constant factor of 1/2 in passing from
traditional formulations to Linear Algebra ones.

Remark 2 Thus Ptolemy’s Theorem — converse included — now reads that the Ptolemy quadratic form
takes the Ptolemy value 0 iff the nondegenerate quadrilateral in question is cyclic. IL.e.
Pt(ABCD) = Pty := 0 iff the nondegenerate ABCD is cyclic .

3 Its eigentheory
Remark 1 The Ptolemy eigenequation is
0 =det(Pt — Al) = (X —1)° = (A + D3\ — 1)%.
=)A= =*1
are the Ptolemy eigenvalues. Each occurring with multiplicity 3 .
Remark 2 One can additionally read off from this that
rank(Pt) = 6.

Which, being the full rank supported, means that
null(Pt) = 0.

The Mathematicians’ signature! is
sMath(Pt) = 3 .

ISee [41, 52] for these definitions of signature, conventions in use included.



The Physicists’ signature-in-summary is
Sphys(Pt) = 0. (5)
And the Physicists’ signature-in-detail is
SPhys-detail(Pt) = + + + — — — .

Remark 3 Ptolemy’s Theorem is thus a statement about the separation-lengths 6-vector r being null
with respect to an indefinite 6 X 6 matrix. One ready consequence of this is that the separation-lengths
of the cyclic quadrilaterals thus described are not free. For were they free, then @ would take all 3
possible signs.

Remark 4 In the standard basis, the Ptolemy matrix decomposes into 2 blocks: the 4 x 4 sides
block and the 2 x 2 diagonals block. This corresponds to the ‘sides’ and ‘diagonals’ partition of the
separations of a cyclic quadrilateral.? In the paired-separations basis, however, it decomposes into 3
2 x 2 blocks. I.e. one per pair. This is simpler to work with, as follows.

Here just 3 blockwise uses of a standard symmetric-antisymmetric combination provides the eigenvec-

tors. Le. .
7 la) o

As then padded out, firstly with 4 postceding zeros. Then again with 2 anteceding and 2 postceding
zeros. And then once more with 4 anteceding zeros.
Remark 5 In terms of the side-length variables, the above eigenbasis is, more succinctly,
a £ c b+d e £ f
V2T V2T V2

I.e. Geometrically the diagonal-sum, diagonal difference and each opposite side pair’s sum and difference.

Exercise 2 a) Show that the eigenexpansion version of Ptolemy’s Theorem reads

(a+c¢) = (a—c)P + (b+d)? — (b—d)? — (e+ [) + (e~ f)P? = 0.
Provide an Algebraic interpretation for this equation.
b) Show that the semi-perimeter is also a normalized Ptolemy eigenvector. And orthogonal to the opposite

side-pairs difference eigenvectors. Find and Geometrically interpret the eigenvector e that completes
this eigenbasis. Prove that

52+627852:l. (7)
Where A
S92 = Z 83
I=1

¢) Show that the separimeter [43]
6
1
NI
\/6 s =1

is also a valid choice of eigenvector. Normalize it. Which eigenvectors considered so far are orthogonally
compatible with this? Complete these to an orthonormal eigenbasis.

Remark 6 Our first eigenbasis above, and the semi-perimeter eigenbasis, respect the sides to diagonals
block structure. The separimeter is however a separations-democratic [37] notion, by which eigenbases
extending it do not respect this block split. This accounts for the separimeter not fitting in so well with
the study of the Ptolemy matrix.

20r more generally of a convex quadrilateral. Less experienced Readers might wish to check at this point that every
cyclic quadrilateral must be convex...



4 The Ptolemy matrix is a fortiori an involution

Lemma 1
Pt? =1, (8)

now standing for the 6-d identity matrix.

Proof
(-1 = 1. (9)
T2 =1 (10)
the 6-d identity matrix.
T 0 0O T 0 0O T2 0 0 I 0 0
Pt? = 0O T O 0O T O = 0 T2 0 = 0 1 0
0o 0 -T 0o 0 -T 0 0 (-1)272 0 0 1

Where the first step evaluates Pt in the paired-separations basis. The second uses the matrix multipli-
cation rule and refactorization. The third uses (9-10) And the fourth dissolves the blocks. O

Remark 1 This involution has a clear action on a single separation-magnitudes 6-vector, as follows.

a C
Ta)og 3
pt-r= (o T ofl | =1|3}1" (11)
0o 0 -T
e f
f e

Naming Remark 1 We henceforth call Pt the Ptolemy involution. A truer name for which is
separation-pairs flipping involution. It being understood that, in the process, the diagonal lengths also
each pick up a minus sign.



5 Ptolemy’s inequality
Theorem 2 (Ptolemy’s inequality) For ABCD a convex quadrilateral, Then
|AB||BD| < |AB||BD| + |BCJ|AD]|. (12)
Or, in terms of Fig 1’s cyclic notation for the side lengths, as supplemented by the diagonal lengths,
ef < ac + bd. (13)

Conceptually
H(diagonals) < Z H(opposite sides), ie.xz < [. (14)

Remark 1 The above is stated to cover the convex case. By using suitably directed quantities, however,
Ptolemy’s inequality generalizes to arbitrary quadrilaterals. In contrast, Ptolemy’s Theorem clearly
cannot, since it describes cyclic quadrilaterals (modulo degenerate cases).

Exercise 3 In fact, if degenerate quadrilaterals are entertained, then Ptolemy’s inequality is not just
saturated by Ptolemy’s Theorem’s cyclic quadrilaterals. For if both of the following hold then we also
have equality.

a) ABCD is collinear.
b) Precisely 1 of B or D lies between A and C .
Prove this, and exhaust all other degenerate possibilities.

Remark 2 Thus for ABCD a non-collinear quadrilateral, the following is a quantifier of departure from
cyclicness [39)].

(Ptolemaic acyclicness) := Z H(opposite sides) — H(diagonals) =1l—-z. (15)

By Ptolemy’s inequality, this is a non-negative quantity. We qualify it as ‘Ptolemaic’, since we shall soon
be entertaining further notions of acyclicness for quadrilaterals [47, 49, 52].

Remark 3 For instance the following styles of proof carry over from Ptolemy’s Theorem to Ptolemy’s
inequality. Use of similar triangles, provided that we supplement it with the triangle inequality [52] . Use
of Inversive Geometry [19]. Use of Projective Geometry.

Remark 4 A distinct useful proof involves using dot products of vectors [52]; the triangle inequality is
guaranteed by Euclidean space here. This method is worth mentioning because it obviously generalizes to
higher dimensions. In other words, Ptolemy’s inequality also holds for tetrahaedrons, be these minimally
realized in 3-d , or in some yet higher dimension.

Naming Remark 2 A truer name for Ptolemy’s Theorem is cyclic quadrilateral separations relation.
And one for Ptolemy’s inequality is 4-body problem separations inequality. This includes building in that
the inequality transcends to arbitrary spatial dimension. For ‘N-body problem’ carries this connotation,
while ‘quadrilateral’ does not.



6 Linear Algebra of Ptolemy’s inequality
Theorem 2’ Ptolemy’s inequality can be recast as

Pt .= 7 -

(K

T > 0. (16)

Remark 1 Ptolemy’s inequality in the unsaturated case can then be reinterpreted as follows. The
separation-lengths 6-vector r must be spacelike with respect to our indefinite 6 x 6 involution Pt
. Which is, more specifically, of Physicists’ signature + + + — — —

Remark 2 By way of comparison, the Minkowski spacetime of Special Relativity can be chosen to be

+ + 4+ — . While its also commonly used 2-d model is + — . All three are indefinite. The
second model has null cones, which collapse to null wedges in the third model. In each case separating
between spacelike regions and timelike regions.

There being three independent directions for each sign in the first case alters the overall topology. Courant
and Hilbert [21] fire a warning shot here: this is an ultrahyperbolic space, in which ‘natural PDEs’ would
not be known to be well-posed.

And yet the distinction between a null vector and a spacelike vector remains. As does the difference
between a null surface — swept out by null vectors — and a spacelike surface: swept out by spatial vectors.

Remark 3 Thus in the space of all hexuples of separation-lengths, called separation magnitude space
in [42, 37], contains a null space of cyclic quadrilaterals. Bounding a spacelike space of all permissible
quadrilaterals. And not even for arbitrary quadrilaterals are the separation magnitudes free. For they
cannot take every possible value. Indeed, they have no way of realizing any member of an a priori
co-generic class of quadrilaterals separations data. Whose qualitative description is that these are the
vectors that are timelike with respect to the Ptolemy involution Pt .

In this way, Ptolemy’s inequality and Theorem play a role in the study of quadrilaterals’ separation-
magnitudes space. In the study of the subset of such that are cyclic quadrilaterals. And as regards how
the separations-magnitude space of all quadrilaterals sits within the larger space of all hexuplets, whether
or not these consistently specify quadrilaterals.



7 Outlook

Remark 1 Three further results in particular have been nominatively associated with Ptolemy’s Theorem.

Pointer 1 Let
m := ad + bc, n := ab + cd

be the 3-cycles as regards pairing up sides [47] of [ . Then

has been called the ‘second form of Ptolemy’s Theorem’ [12, 31].

While the closely-related cyclic quadrilateral diagonal-length formulae [11, 12, 23, 31]

l l
o Jim o
n m
were referred to as ‘strong Ptolemy’ in [36].

Pointer 2 A generalized Ptolemy Theorem is as follows. For say a convex quadrilateral,
2 f? = a*c? + v*d> — 2abedcos(a + 7).

This does include Ptolemy’s Theorem as a subcase, as well as giving further insight into Ptolemy’s
inequality being a quantifier of acyclicness. It furthermore finds a role for Pt acting upon the vector
R of ( separation-lengths )? .

Pointer 3 Casey’s Theorem [8, 10, 11] is a distinct generalized Ptolemy Theorem. This con-
siders 4 circles lying tangentially inside what had hitherto played the role of circumcircle of a cyclic
quadrilateral. Then these circles’ bitangents obey the same quadratic relation as Ptolemy’s Theorem’s
separation lengths do. Thus the Linear Algebra of Casey’s Theorem is identical to that of Ptolemy’s.
One needs however to re-interpret all the ensuing Linear Algebra objects in terms of these bitangents, so
the above identification does not quite yet sort out this case [50].

Pointer 4 Further Linear Algebra ensues from combining Ptolemy’s Theorem and what is usually referred
to as Euler’s Quadrilateral Theorem [6, 30, 32] and yet is more truly Euler’s 4-body Theorem
[26, 43].

Remark 2 We anticipate some further benefits from adopting the following batting order. Eigencluster-
ings [42, 37]. Ptolemy’s Theorems and inequality and the cyclic-quadrilateral diagonal-length formulae
(partly in the current Article and partly in [47]). Next, Euler’s 4-body Theorem [43], followed by com-
bining it and Ptolemy [46]. Then [47] Brahmagupta’s area formula [3, 15, 19, 23, 40] and circumradius
formulae (including Parameshvara’s) [4, 31], both of which are for cyclic quadrilaterals. Then Bretschnei-
der’s area formulae [7, 19, 23, 40, 48]. And finally a generalized Ptolemy Theorem [48]. This batting
order is Part II of [52]’s essay plan, and will be rehearsed to some extent in the first portion of [49].

Remark 3 One of the Authors’ study [41] of the Heron matrix [22, 38] had found a similar role for
indefinite quadratic forms realizing only the null and spacelike sign cases. There for zero area and
positive area; negative area being inconsistent! In this study, furthermore, action on both r and R
played a role. (Separations coinciding with sides for triangles, these are denoted by s and S in these
Articles.) Unifying — at the level of Linear Algebra for flat space — Heron’s formula, the cycle of cosine
rules and the cycle of triangle inequalities. Interestingly, both of these features return upon considering
Ptolemy’s Theorem and inequality.



8 Epilogue

Remark 1 One of the Authors’ study of Heron’s formula led to [40, 45] a new: derivation of Hopf’s
little map [13, 27, 28, 51], proof of Smale’s Little Theorem [17], and proof of Kendall’s Little Theorem
[18, 20, 24]. The last two of these results pertain to Shape Theory. All three of these results extend via
Hopf’s generalized map to complex-projective spaces that model the space of all N-a-gons in the flat
plane.

Remark 2 Ptolemy’s Theorem is not expected to play an initial role here at least, since it considers just
cyclic quadrilatererals. So only further considerations of spaces of cyclic quadrilaterals might have some
role for this. Be this intrinsic modelling of these spaces, or study of how they sit within their ambient
CP? of all quadrilaterals [34].

Remark 3 A suitably generally formulated version of Ptolemy’s inequality is not however affected by
this limitation.

Remark 4 For the sake of clarity, the separations magnitude space that we commented on above is not
part of Shape Theory. Its consistent subset is, to some extent.

Examples 1-2 On the one hand, sides data does not suffice for quadrilaterals, as is clear from the infinite
variety of rhombi. On the other hand, more obvious sides and relative angles prescriptions for this can
be converted to separations data.

Example 3 This still leaves the following ambiguity. Given four points in general position, a quadrilateral
can be drawn through them in 3 different orders of ‘joining the dots’ In some positions, this gives 3
distinct re-entrant figures, while in others, 1 convex and 2 crossed figures. Shape Theory is however
about the constellation of points itself, for which such an assignment is immaterial. Thus examples of
this kind do not spoil separation-magnitude data’s capacity to discern.

Example 4 Finally for triangles, for which there are no relative angles that are independent of side
lengths, both sides legngth space and the triangleland shape sphere are well known [24, 52]. Already
here, however, the separations-magnitude parametrization is opaque at the Metric Geometry level. It is
rather [42, 37] 1 eigencluster magnitude ratio and the relative angle between the corresponding vectors
that provides clarity. Which extends to N — 2 such pairs providing clarity for the N-a-gon [17, 24, 37].
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