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Abstract
For N -body configurations, eigenclustering vectors are alias (relative) Jacobi vectors. N = 4
supports 2 distinct eigenclustering networks: H and K . Which source of ambiguity growingly
persists for subsequent N .

We now establish that the counts of eigenclustering networks are given by the Wedderburn–Etherington
numbers. While providing one algebraic and two tree representations for this that are natural to the
eigenclustering context. The smaller tree representation – rooted at-most binary – provides a good
candidate for a systematic notation for eigenclusterings. K is here the straight 3-path while H is
the bent 3-path.
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1 Introduction
Let us consider N -body configurations. These play major roles in Dynamics [4, 5, 6, 9, 11, 12, 13, 28],
Molecular Physics [14, 18] and Shape Statistics [10, 17, 19, 25]. Their natural home is however Flat
Geometry [39]. To cover all of these applications at once, let us conceptualize in terms of points-or-
particles [26]. Where the latter are classical nonrelativistic point particles.

N = 0 does not even have any points-or-particles.

N = 1 has 1 , but supports no separations.

N = 2 possesses a single separation.

N = 3 has 3 separations, but now [26] only 2 are linearly independent (LI). Furthermore, the
inertia quadric is no longer diagonal in terms of these [26]. This is resolved by passing to eigenclusterings.
Separation vectors are thereby converted to eigenclustering vectors [26]: now in general separation vectors
between subsystem centres of mass (CoM). Which are elsewhere alias (relative) Jacobi vectors [5, 11, 14,
18, 28]. For N = 3 , there are 3 labelling choices for these if the points-or-particles are themselves
labelled. For equal point-or-particle masses, these consist of each of the 3 side vectors paired with its
corresponding median vector. These collapse to a single ‘T’ shape (column 1 of Fig 1) if the points-or-
particles are furthermore indistinguishable.

N = 4 is minimum for 2 distinct eigenclustering network to be realized: the first H and K in
column 1 of Fig 1. Such eigenclustering network ambiguities are independent of labelling ambiguities.

So how many eigenclustering network e(N) do N -body configurations support, under the assumption
of indistinguishable point-or-particles?
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2 The count using Graph Theory
Remark 1 Picking an eigenclustering amounts to forming a network of CoMs for the arbitrary N -body
configuration, by coarse-graining two subsystems into one at each step.

These eigenclustering networks are rooted binary trees with N leaves (column 3 of Fig 1). Where the
role of leaves is played by the constituent points-or-particles, and that of root by the system’s total mass.

Lemma 1 These are equivalently rooted binary trees with 2 N − 1 vertices.

Proof Binary trees are tri-regular [29]. With specifically

N leaves of degree 1 . (1)

1 root of degree 2 . (2)

I internal vertices of degree 3 . (3)

Introduce also the Graph-Theoretically standard notation V and E for the total numbers of vertices
and edges respectively.

Binary trees obey the following simultaneous linear equations.

V − E = 1 , (4)

V − I = N + 1 , (5)

2 E − 3 I = N + 2 . (6)

We are here treating N as an input datum and the other 3 quantities as unknowns, so this is a
well-determined system.

For by tri-regularity, (1-3) exhaust all possible vertices. So

V = N + 1 + I ,

which rearranges to (5).

Also, for any graph, the number of edges E obeys Euler’s Degree-sum Theorem. Whose degreewise-
expanded form is

2 E =
∑

i

i di . (7)

By the above exhaustion again, this returns

2 E = N + 2 + 3 I ,

which rearranges to (6).

But also binary trees are trees. For which Euler’s even more famous relation

V − E + F = 2 (8)

– for F the number of faces – reduces to the following.

V − E + 1 = 2 ,

which cancels down to (4). This is since trees are acyclic, and so only have the one – exterior – face.

Finally, to solve our system, (5) - (4) yields

E = I + N .
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Substitute in (6) to obtain
2 N + 2 I − 3 I = N + 2 .

Which cancels down to
I = N − 2 .

Substituting this in (5),
V = N − 2 + N + 1 .

Which simplifies to our desired answer. 2

Remark 2 In symbols,
e(N) = t∗

2( 2 N − 1 ) . (9)

Where the t stands for tree, the 2 for binary and the ∗ for rooted. At the level of arenas [29],

EN(N) =̃ Tree∗
2( 2 N − 1 ) . (10)

Where EN(N) stands for arena of eigenclustering networks supported by the N -body problem.

3 The count using Algebra
Remark 1 The ways of performing Remark 1 of Sec 2’s procedure are in 1 : 1 correspondence with the
sequential binary bracketings of the sum of N 1 ’s [27]. Where the 1 ’s encode the indistinguishable
points-or-particles. And the binary bracketing encodes the two subsystems into one operation.

The total number of 1 ’s within a bracket counts a subsystem’s number of points-or-particles. Which
then indexes the strength of the CoM produced by the bracket. The resulting strings of 1 ’s, sums and
brackets are displayed in column 2 of Fig 1. For N = 0 to 5 . [40] shall cover up to N = 8 in
more detail than the current Article.

Remark 2 These strings are in 1 : 1 correspondence with the number of ways for bracketing xN for
a multiplication that is commutative but non-associative. In symbols,

e(N) = ca(N) . (11)

Where the c stands for commutative, the a for associative and the bar for ‘non’.

4 Our result
Theorem 1 Eigenclustering network count returns the Wedderburn–Etherington numbers.

Proof Each of the following standardly return these numbers. The count of Lemma 1’s objects pro-
vides a Graph Theory proof. While the count of Remark 2 of Sec 3’s objects – Etherington’s algebraic
representation [8] – provides an Algebra proof. 2

Remark 1 The Wedderburn–Etherington numbers w(N) [7, 8, 15, 24] are standard and tabulated. See
Fig 2.b) for the first 20 , and [36] for more and links to many more.

Remark 2 See Fig 2.a) for a symbolic rendition of Theorem 1. See [40] for Etherington’s algebraic
representation for N = 0 to 8 .
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5 Discussion
Remark 1 Up to N = 8 ,

e(N) = w(N) = t(N) : (12)

the number of unlabelled trees on N vertices [15, 24, 37]. But
e(9) = w(9) = 46 ̸= 47 = t(9) . (13)

Remark 2 Also, up to N = 7 ,
e(N) = w(N) = h(N) : (14)

the half-Catalan numbers [15, 38]. But
e(8) = w(8) = 23 ̸= 24 = h(8) . (15)

In this case, the divergence follows from the breakdown of the independence embodied by the half-Catalan
numbers’ quadratic recurrence relation of convolution type. I.e.

e(N) =
⌊ N

2 ⌋∑
K = 1

e(K) e( N − K ) . (16)

The N = 8 case is minimum for such a breakdown. For the 4 | 4 eigenclustering partition does not
distinguish between the following. Partitioning the first 4 as 2 | 2 and the second as 3 | 1 and vice
versa.

Remark 3 We are interested in finding practical nomenclature for small-N eigenclustering networks.
In this regard, the above rooted-binary-tree and algebraic representations are rather long.

One suggestion is to defoliate the trees down to smaller trees. This sends 2 N − 1 down to just
N − 1 . What we then arrive at are rooted at-most binary trees (last column of Fig 1). Which now

model the network of nontrivial CoMs: to the exclusion of the individual points-or-particles. This remains
well-adapted to eigenclustering’s Physical content.

These objects are in 1 : 1 correspondence with the previous since ‘defoliate all leaves’ is an isomorphism.
Whose inverse is well-defined on binary tees: ‘binarily (re)foliate’. See Fig 2.c) for a final symbolic
rendition, where ≤ 2 denotes ‘at-most binary’. While, at the level of arenas,

Tree∗
2( 2 N − 1 ) =̃ Tree∗

≤ 2( N − 1 ) . (17)

Pointer 1 A companion Article [40] provides Order-Theoretic rather than just counting considerations.

Pointer 2 Our present reason for considering eigenclustering networks is that we have recently established
the following. That Apollonius’ Median-Length Theorem [1, 23, 39] and Euler’s Quadrilateral Theorem
[3, 20, 21, 22, 31, 39] extend to [32, 33, 34, 35] one Length-Exchange Theorem per eigenclustering network.
With a nontrivial such Theorem being realized for each N supporting nontrivial eigenclusterings: not
just separations. So that they have other eigenclustering lengths to exchange for separations. I.e. for
every N ≥ 3 , there is one such Theorem per eigenclustering network. In Euler’s case, it is the Newton
line interval’s [2] length which is being exchanged [31].

We have thus now established that for a given N , the number of such Theorems is the corresponding
Wedderburn–Etherington number w(N) . Which can also be described as a Tree∗

2( 2 N − 1 )-valued
family of Theorems. Or, removing trivial content, to a Tree∗

≤ 2( N − 1 )-valued family of Theorems.

N = 4 ’s K and the H each generalize to give the bottom and top elements of Tree∗
≤ 2( N − 1 )

for each N . The corresponding N − 1 -vertex tree graphs for these are as follows. The straight-Pn

. And the path of claws (with leaf). Comprising the path formed by N − 3
2 claws for N odd. And

the preceding odd case with an extra upturned leaf from its root for N even. Aside from being Order-
Theoretically privileged (see [40] for further details), these [35] join the straight paths [33] in having a
specific series form for their Length-Exchange Theorems.
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Figure 1:
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Figure 2:
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