

N-Body Problem: Eigenclustering Network Counts return the Wedderburn–Etherington Numbers

E. Anderson*

Abstract

For N -body configurations, eigenclustering vectors are alias (relative) Jacobi vectors. $N = 4$ supports 2 distinct eigenclustering networks: H and K . Which source of ambiguity growingly persists for subsequent N .

We now establish that the counts of eigenclustering networks are given by the Wedderburn–Etherington numbers. While providing one algebraic and two tree representations for this that are natural to the eigenclustering context. The smaller tree representation – rooted at-most binary – provides a good candidate for a systematic notation for eigenclusterings. K is here the straight 3-path while H is the bent 3-path.

* Dr.E.Anderson.Maths.Physics *at* protonmail.com . Institute for the Theory of STEM

Date-stamp v1: 22-08-2024. Copyright of Dr E. Anderson.

1 Introduction

Let us consider N -body configurations. These play major roles in Dynamics [4, 5, 6, 9, 11, 12, 13, 28], Molecular Physics [14, 18] and Shape Statistics [10, 17, 19, 25]. Their natural home is however Flat Geometry [39]. To cover all of these applications at once, let us conceptualize in terms of points-or-particles [26]. Where the latter are classical nonrelativistic point particles.

$N = 0$ does not even have any points-or-particles.

$N = 1$ has 1, but supports no separations.

$N = 2$ possesses a single separation.

$N = 3$ has 3 separations, but now [26] only 2 are linearly independent (LI). Furthermore, the inertia quadric is no longer diagonal in terms of these [26]. This is resolved by passing to eigenclusterings. Separation vectors are thereby converted to *eigenclustering vectors* [26]: now in general separation vectors between subsystem centres of mass (CoM). Which are elsewhere alias (relative) *Jacobi vectors* [5, 11, 14, 18, 28]. For $N = 3$, there are 3 labelling choices for these if the points-or-particles are themselves labelled. For equal point-or-particle masses, these consist of each of the 3 side vectors paired with its corresponding median vector. These collapse to a single ‘T’ shape (column 1 of Fig 1) if the points-or-particles are furthermore indistinguishable.

$N = 4$ is minimum for 2 distinct eigenclustering network to be realized: the first H and K in column 1 of Fig 1. Such eigenclustering network ambiguities are independent of labelling ambiguities.

So how many eigenclustering network $e(N)$ do N -body configurations support, under the assumption of indistinguishable point-or-particles?

2 The count using Graph Theory

Remark 1 Picking an eigenclustering amounts to forming a network of CoMs for the arbitrary N -body configuration, by coarse-graining two subsystems into one at each step.

These eigenclustering networks are rooted binary trees with N leaves (column 3 of Fig 1). Where the role of leaves is played by the constituent points-or-particles, and that of root by the system's total mass.

Lemma 1 These are equivalently rooted binary trees with $2N - 1$ vertices.

Proof Binary trees are tri-regular [29]. With specifically

$$N \text{ leaves of degree 1}. \quad (1)$$

$$1 \text{ root of degree 2}. \quad (2)$$

$$I \text{ internal vertices of degree 3}. \quad (3)$$

Introduce also the Graph-Theoretically standard notation V and E for the total numbers of vertices and edges respectively.

Binary trees obey the following simultaneous linear equations.

$$V - E = 1, \quad (4)$$

$$V - I = N + 1, \quad (5)$$

$$2E - 3I = N + 2. \quad (6)$$

We are here treating N as an input datum and the other 3 quantities as unknowns, so this is a well-determined system.

For by tri-regularity, (1-3) exhaust all possible vertices. So

$$V = N + 1 + I,$$

which rearranges to (5).

Also, for any graph, the number of edges E obeys Euler's Degree-sum Theorem. Whose degreewise-expanded form is

$$2E = \sum_i i d_i. \quad (7)$$

By the above exhaustion again, this returns

$$2E = N + 2 + 3I,$$

which rearranges to (6).

But also binary trees are trees. For which Euler's even more famous relation

$$V - E + F = 2 \quad (8)$$

– for F the number of faces – reduces to the following.

$$V - E + 1 = 2,$$

which cancels down to (4). This is since trees are acyclic, and so only have the one – exterior – face.

Finally, to solve our system, (5) - (4) yields

$$E = I + N.$$

Substitute in (6) to obtain

$$2N + 2I - 3I = N + 2.$$

Which cancels down to

$$I = N - 2.$$

Substituting this in (5),

$$V = N - 2 + N + 1.$$

Which simplifies to our desired answer. \square

Remark 2 In symbols,

$$e(N) = t_2^*(2N - 1). \quad (9)$$

Where the t stands for tree, the 2 for binary and the $*$ for rooted. At the level of arenas [29],

$$\mathfrak{E}\mathfrak{N}(N) \cong \mathfrak{T}\text{ree}_2^*(2N - 1). \quad (10)$$

Where $\mathfrak{E}\mathfrak{N}(N)$ stands for arena of eigenclustering networks supported by the N -body problem.

3 The count using Algebra

Remark 1 The ways of performing Remark 1 of Sec 2's procedure are in $1 : 1$ correspondence with the sequential binary bracketings of the sum of N 1 's [27]. Where the 1 's encode the indistinguishable points-or-particles. And the binary bracketing encodes the two subsystems into one operation.

The total number of 1 's within a bracket counts a subsystem's number of points-or-particles. Which then indexes the strength of the CoM produced by the bracket. The resulting strings of 1 's, sums and brackets are displayed in column 2 of Fig 1. For $N = 0$ to 5 . [40] shall cover up to $N = 8$ in more detail than the current Article.

Remark 2 These strings are in $1 : 1$ correspondence with the number of ways for bracketing x^N for a multiplication that is commutative but non-associative. In symbols,

$$e(N) = c\bar{a}(N). \quad (11)$$

Where the c stands for commutative, the a for associative and the bar for 'non'.

4 Our result

Theorem 1 Eigenclustering network count returns the Wedderburn–Etherington numbers.

Proof Each of the following standardly return these numbers. The count of Lemma 1's objects provides a Graph Theory proof. While the count of Remark 2 of Sec 3's objects – Etherington's algebraic representation [8] – provides an Algebra proof. \square

Remark 1 The *Wedderburn–Etherington numbers* $w(N)$ [7, 8, 15, 24] are standard and tabulated. See Fig 2.b) for the first 20, and [36] for more and links to many more.

Remark 2 See Fig 2.a) for a symbolic rendition of Theorem 1. See [40] for Etherington's algebraic representation for $N = 0$ to 8.

5 Discussion

Remark 1 Up to $N = 8$,

$$e(N) = w(N) = t(N) : \quad (12)$$

the number of unlabelled trees on N vertices [15, 24, 37]. But

$$e(9) = w(9) = 46 \neq 47 = t(9) . \quad (13)$$

Remark 2 Also, up to $N = 7$,

$$e(N) = w(N) = h(N) : \quad (14)$$

the *half-Catalan numbers* [15, 38]. But

$$e(8) = w(8) = 23 \neq 24 = h(8) . \quad (15)$$

In this case, the divergence follows from the breakdown of the independence embodied by the half-Catalan numbers' quadratic recurrence relation of convolution type. I.e.

$$e(N) = \sum_{K=1}^{\lfloor \frac{N}{2} \rfloor} e(K) e(N - K) . \quad (16)$$

The $N = 8$ case is minimum for such a breakdown. For the $4|4$ eigenclustering partition does not distinguish between the following. Partitioning the first 4 as $2|2$ and the second as $3|1$ and vice versa.

Remark 3 We are interested in finding practical nomenclature for small- N eigenclustering networks. In this regard, the above rooted-binary-tree and algebraic representations are rather long.

One suggestion is to defoliate the trees down to smaller trees. This sends $2N - 1$ down to just $N - 1$. What we then arrive at are *rooted at-most binary trees* (last column of Fig 1). Which now model the network of *nontrivial CoMs*: to the exclusion of the individual points-or-particles. This remains well-adapted to eigenclustering's Physical content.

These objects are in $1 : 1$ correspondence with the previous since 'defoliate all leaves' is an isomorphism. Whose inverse is well-defined on binary trees: 'binarily (re)foliate'. See Fig 2.c) for a final symbolic rendition, where ≤ 2 denotes 'at-most binary'. While, at the level of arenas,

$$\mathbf{Tree}_2^*(2N - 1) \cong \mathbf{Tree}_{\leq 2}^*(N - 1) . \quad (17)$$

Pointer 1 A companion Article [40] provides Order-Theoretic rather than just counting considerations.

Pointer 2 Our present reason for considering eigenclustering networks is that we have recently established the following. That Apollonius' Median-Length Theorem [1, 23, 39] and Euler's Quadrilateral Theorem [3, 20, 21, 22, 31, 39] extend to [32, 33, 34, 35] one Length-Exchange Theorem per eigenclustering network. With a nontrivial such Theorem being realized for each N supporting nontrivial eigenclusterings: not just separations. So that they have other eigenclustering lengths to exchange for separations. I.e. for every $N \geq 3$, there is one such Theorem per eigenclustering network. In Euler's case, it is the Newton line interval's [2] length which is being exchanged [31].

We have thus now established that for a given N , the number of such Theorems is the corresponding Wedderburn–Etherington number $w(N)$. Which can also be described as a $\mathbf{Tree}_2^*(2N - 1)$ -valued family of Theorems. Or, removing trivial content, to a $\mathbf{Tree}_{\leq 2}^*(N - 1)$ -valued family of Theorems.

$N = 4$'s K and the H each generalize to give the bottom and top elements of $\mathbf{Tree}_{\leq 2}^*(N - 1)$ for each N . The corresponding $N - 1$ -vertex tree graphs for these are as follows. The straight- P_n . And the path of claws (with leaf). Comprising the path formed by $\frac{N-3}{2}$ claws for N odd. And the preceding odd case with an extra upturned leaf from its root for N even. Aside from being Order-Theoretically privileged (see [40] for further details), these [35] join the straight paths [33] in having a specific series form for their Length-Exchange Theorems.

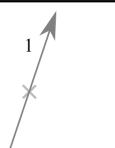
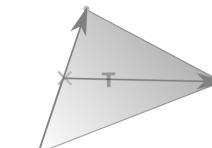
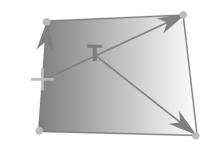
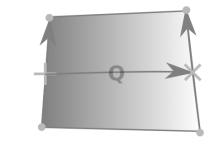
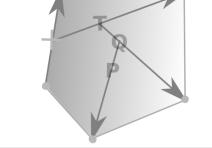
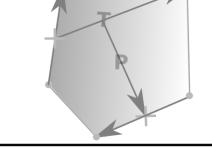
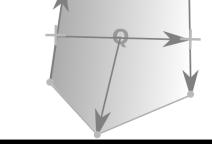
Eigenclusterings and some representations for them				
N	Eigenclustering	Algebraic rep	$t_2^*(2N - 1)$ rep	$t_{\leq 2}^*(N - 1)$ rep
0	ϕ	ϕ	ϕ	ϕ
1	\cdot	1	\bullet	ϕ
2		$1 + 1$		\cdot
3		$(1 + 1) + 1$		\cdot
4	K 	$((1 + 1) + 1) + 1$		
	H 	$(1 + 1) + (1 + 1)$		
5	K 	$((((1 + 1) + 1) + 1) + 1$		
	M 	$((1 + 1) + 1) + (1 + 1)$		
1	H 	$((1 + 1) + (1 + 1)) + 1$		

Figure 1:

b) Small N counts		a) Our two lines of proof		
N	$w(N)$	$e(N)$	$=$	$c\bar{a}(N)$
0	0			
1	1		\parallel	\parallel
2	1			
3	1	$t_2^*(2N - 1)$	$=$	$w(N)$
4	2			
5	3			
6	6			
7	11			
8	23			
9	46			
10	98	$e(N)$	$=$	$c\bar{a}(N)$ Algebra
11	207			
12	451		\parallel	Theorem 1 \parallel
13	983			
14	2179	$t_2^*(2N - 1)$	$=$	$w(N)$
15	4850	<i>defoliate</i> \parallel		
16	10905			
17	24631	$t_{\leq 2}^*(N - 1)$		
18	56011			
19	127912	Graph		
20	293547	Theory		

© 2024 Dr E. Anderson

Figure 2:

Acknowledgments E.A. thanks S, K and A for previous discussions. And the other participants at the Institute of the Theory of STEM's "Linear Algebra of Quadrilaterals" Summer School 2024. E.A. also thanks C, Malcolm MacCallum, Reza Tavakol, Jeremy Butterfield and Enrique Alvarez for career support.

References

- [1] Apollonius of Perga (3rd and 2nd Centuries B.C.E.).
- [2] I. Newton evoked the Newton line in proving a Theorem about Quadrilaterals. For an English translation, see e.g. *The Mathematical Papers of Isaac Newton* ed. D. Whiteside (C.U.P., Cambridge 1967–1981).
- [3] L. Euler worked on Geometry, among many other topics, in the 18th Century; this Theorem dates to 1748.
- [4] J.-L. Lagrange worked on Celestial Mechanics, among many other topics, in the late 18th Century.
- [5] C.G.J. Jacobi worked on Mechanics, among many other topics, in the 1840s.
- [6] K.F. Sundman, "Mémoire sur le Problème de Trois Corps", *Acta Mathematica* **36** (1912).
- [7] J.H.M. Wedderburn, "The Functional Equation $g(x^2) = 2ax + [g(x)]^2$ ", *Ann. Math.* **24** 121 (1922).
- [8] I.M.H. Etherington, "On Non-associative Combinations", *Proc. Royal Soc. Edinburgh*, **59** 153 (1939).
- [9] D.G. Saari, *A Global Existence Theorem for the Four-Body Problem of Newtonian Mechanics*, *J. Differential Equations*, **26** 80 (1977).
- [10] D.G. Kendall, "Shape Manifolds, Procrustean Metrics and Complex Projective Spaces", *Bull. Lond. Math. Soc.* **16** 81 (1984).
- [11] C. Marchal, *Celestial Mechanics* (Elsevier, Tokyo 1990).
- [12] F. Diacu, *Singularities of the N-Body Problem* (C.R.M., Montréal 1992).
- [13] Z. Xia, "The Existence of Noncollision Singularities in Newtonian Systems". *Ann. Math.* **135** 411 (1992).

[14] R.G. Littlejohn and M. Reinsch, "Internal or Shape Coordinates in the N -body Problem", Phys. Rev. **A52** 2035 (1995).

[15] N.J.A. Sloane and S. Plouffe, *The Encyclopedia of Integer Sequences* (Academic Press, 1995).

[16] F. Diacu, "The Solution of the N -Body Problem", Math. Intelligencer. **18** 66 (1996).

[17] C.G.S. Small, *The Statistical Theory of Shape* (Springer, New York, 1996).

[18] R.G. Littlejohn and M. Reinsch, "Gauge Fields in the Separation of Rotations and Internal Motions in the N -Body Problem", Rev. Mod. Phys. **69** 213 (1997).

[19] D.G. Kendall, D. Barden, T.K. Carne and H. Le, *Shape and Shape Theory* (Wiley, Chichester 1999).

[20] G.A. Kendall, "Euler's Theorem for Generalized Quadrilaterals", College Math. J. **33** 403 (2002).

[21] W. Dunham, "Quadrilaterally Speaking", in *The Edge of the Universe: Celebrating Ten Years of Math Horizons* ed. D. Haunsperger and S. Kennedy (M.A.A., Washington D.C. 2006)

[22] C. Alsina and R.B. Nelsen, *Charming Proofs* (M.A.A., Washington D.C. 2010).

[23] I.E. Leonard, J.E. Lewis, A.C.F. Liu and G.W. Tokarsky, *Classical Geometry. Euclidean, Transformational, Inversive and Projective* (Wiley, Hoboken N.J. 2014).

[24] *Handbook of Enumerative Combinatorics* ed. M. Bona (C.R.C. Press, Boca Raton Fl. 2015)

[25] V. Patrangenaru and L. Ellingson, "Nonparametric Statistics on Manifolds and their Applications to Object Data Analysis" (Taylor and Francis, Boca Raton, FL 2016).

[26] E. Anderson, "The Smallest Shape Spaces. I. Shape Theory Posed, with Example of 3 Points on the Line", arXiv:1711.10054. For the updated version, see <https://wordpress.com/page/conceptsofshape.space/1225> .

[27] " N -Body Problem: Smallest N 's for Qualitative Nontrivialities. I.", arXiv:1807.08391; For the updated version, see <https://wordpress.com/page/conceptsofshape.space/1235> .

[28] J. Xue, *Non-collision Singularities in a Planar 4-Body Problem*, Acta Math., **224** 253 (2020), arXiv:1409.0048.

[29] E. Anderson, *Applied Combinatorics*, Widely-Applicable Mathematics Series. A. Improving understanding of everything with a pinch of Combinatorics. **0**, (2022). Made freely available in response to the pandemic here: <https://conceptsofshape.space/applied-combinatorics/> .

[30] "A New 'Physical' Proof of Apollonius' Theorem" (2024), <https://wordpress.com/page/conceptsofshape.space/1353> .

[31] "Euler's Quadrilateral Theorem. I. A brief new Proof that is Physically Guaranteed to Generalize." alias "Eigenclustering-Length Exchange Theorems. I. P_2 and bent- P_3 . (2024), <https://wordpress.com/page/conceptsofshape.space/1297> .

[32] "Eigenclustering-Length Exchange Theorems. II. Straight- P_3 alias K-counterpart of Euler-H . (2024), <https://wordpress.com/page/conceptsofshape.space/1299> .

[33] "III. The Bottom Series: Straight- P_n . (2024) <https://wordpress.com/page/conceptsofshape.space/1301> ;

[34] "IV. 5-Body Problem" . (2024) <https://wordpress.com/page/conceptsofshape.space/1512> ;
"V. 6-Body Problem" . (2024) <https://wordpress.com/page/conceptsofshape.space/1514> ;

[35] "VI. The Top Series: Chain of Claws (with Leaf)" . (2024), <https://wordpress.com/page/conceptsofshape.space/1516>.

[36] The On-Line Encyclopedia of Integer Sequences, "Wedderburn-Etherington Numbers" A001190 , <https://oeis.org/A001190> .

[37] The On-Line Encyclopedia of Integer Sequences, "Number of Trees with n Unlabeled Nodes" A000055 , <https://oeis.org/A000055> .

[38] The On-Line Encyclopedia of Integer Sequences, "Half-Catalan Numbers" A000992 , <https://oeis.org/A000992> .

[39] *The Structure of Flat Geometry*, in some places called additionally *Widely-Applicable Mathematics*. A. Improving understanding of everything by dual-wielding Combinatorics and Linear Algebra. **3**, forthcoming 2025.

[40] E. Anderson, forthcoming.