Generalizing Heron’s formula via Multi-Linear Algebra
I. Equi-Cevians and Invertible Cevians

Edward Anderson*

Abstract

It has long been known that medians admit their own Heron’s formula. How special are medians in
this regard?

We recently re-proved the medians-data Heron formula using Linear Algebra. This working’s sides-to-
medians Apollonius matrix O generalizes to the sides-to-arbitrary-Cevians Stewart matrix 7' . This
provides us with the arena within which we assess the medians case’s robustness: the space of triples
of Cevians. The key properties of O for the medians proof are involutivity up to proportion and
commutativity with the fundamental triangle matrix F at the core of Heron’s formula.

We first show that T is only symmetric for the medians’ O . A knock-on effect of which is needing
to weaken our involutivity up to proportion and commutativity requirements. We nonetheless next
find a 1-parameter family — the equi-Cevians — for which our weakened conditions hold. By which
our Linear Algebra proof extends and we obtain a 1-parameter family of Heron’s formulae directly
built out of F . Which translates to these having a square-root of 4 factors formulation in which the
‘semi-equi-Cevimeter’ plays the role of the semi-perimeter or ‘semi-medimeter’. Where equi-Cevians
are triples of Cevians that cut their corresponding sides in equal proportion to each other.

We finally show that Heron’s formula extends to invertible T but elsewise arbitrary Cevian data.
Here F is not directly manifested; we rather have a 2-tensor transformation of F under T*

Theorem 2 Theorem 1
Area = ||Cllg-1r 5.5 Area = O /e (e — eq) (e — ep) (€ — ec)
C : vector of invertible Cevians’ (lengths )? €as €bs €c +  equi-Cevian lengths
F : fundamental triangle matrix, e = ( semi-equi-Cevimeter )
as occurs in core of Heron’s formula
U : unimodular Stewart matrix
~1/3
: -
10 = [ -1n+1] o= (& - ¢+ 1)
cycles

i signed proportion of side a
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1 Introduction

1.1 Heron’s formula

Notation 1 We use the standard cyclic notation for the triangle (Fig 2).

Cyclic notation for triangles

vertices A, B, C
sides a, b, c

angles a, B,y

Figure 2:

Definition 1 The semi-perimeter of a triangle is

(a +b+ ¢). (1)

N

Theorem A (Heron’s formula) [2, 16] The area of a triangle is given by

Area = [s [[ (s —a) = Vs(s —a)(s = b)(s — c) . (2)

cycles

Naming Remark 1 Sides-data triangle area formula is a truer name.

Remark 1 Squaring and multiplying by 16 , we obtain the following expanded version of Heron’s formula.
T° = Y Si(28; — Si) =2(AB + BC + CA) — (A* + B* + C?) . (3)
cycles

Where the S; are the squared-sides variables
A = a* and cycles . (4)
j # i . And
T = 4 x Area (5)
is the tetra-area. Which is a useful variable in Shape Theory [24, 33, 51|, as part of [33, 34, 37] the Hopf
map [10, 18, 19, 20, 30, 49], but also even just in Flat Geometry [51].

Remark 2 In these sides-squared variables, (3) can furthermore be expressed as the following fundamental
triangle quadratic form.!

7° = ||S|ls* = ST-F-S. (6)

For (sides)? vector S . And fundamental triangle matriz

111
F:i=[1 -1 1]. (7)
1 1 -

! The ‘fundamental triangle’ name is argued for in [39, 42, 44]. Previously used names are various subsets of Heron—Euler—
Buchholz quadratic form and matriz [21, 6, 37].



1.2 The sides-medians involution

Definition 1 A median in a triangle is a line segment running from one of its vertices to the midpoint of
the opposite side. A cyclic notation for these is provided in Subfig 3.b).

Theorem B (Apollonius’ sides-to-medians Theorem) [1, 29, 22, 31]. The square of the length of the
median m, emanating from vertex A of a triangle is given by the following.

ma2 =

(20* + 2¢° — a®) . (8)

B~ =

Remark 1 Considering all cycles of of (8) is quite common in the literature; see e.g. [22, 29].
Remark 2 In squared variables,

My = - (2B + 2C — A) and cycles . 9)

RNy

Remark 3 This cycle can furthermore be packaged into [34] the sides-to-medians alias Apollonius matriz
O . le

1 -1 2 2
O = 1 2 -1 2 . (10)
2 2 -1
Such that
M=-0-5. (1)
for M the (medians)? vector.
*O S
Remark 4 Interestingly, O is furthermore proportional to the following involution [34].
1 -1 2 2
J = 3 2 -1 2 (12)
2 2 -1
In terms of this,
_ 3
Involution means that
J? =1 (14)
A consequence of which is
Jt=17. (15)

So furthermore

_ 03—, — = 3.
J-S—Zl JS—4ﬂS

w5 (15) 3_
o = —-1-8.
1t

J - M j—l.M:z—l.

Where steps 4 to 6 just pull out a common factor, and use the inverse and identity properties. And thus

§=§j.ﬁ. (16)

Remark 5 Interestingly, J is furthermore a commutant of F [34]:

=

(S]]
I

<
I
=
I

I
E

(17)



1.3 The medians-Heron formula

Theorem C (Medians-Heron formula).?

a)

1= (3) Il (18)
b)
Area = % mH (m — my) = g\/m(m—ma)(m—mb)(m—mc) . (19)

cycles

Where the ‘semi-medimeter’ [34, 35] of a triangle is given by

1 1
m o= g m; i(ma—kmb—kmc) (20)
cycles
Proof
. _ 4 _\T _ 4
" =8"-F S = (3J M) F <3J M)
4\? e — = 4\? - 4\? -
= (3) MY . JT . F.J - M = (3) MY J-F-J- M = (3) MY J- J-F M
4\?2 N 4\2 o
= (3) MT 1. F M = (3) MY . F .M.

Where the first step is (6). The second is (16). The third is
-\ T T —=T
(v-A) =o' A" (21)

The fourth is that J is symmetric, from its explicit form (12). The fifth is the commutativity (17). The
sixth is the involution property. And the seventh is the identity property.

b) Work backwards through Subsec 1.1’s progression. O
Naming Remark 2 A truer name is medians-data triangle area formula.

Remark 2 The factor of 4

3

in (19) can be interpreted as Jacobi mass ratio p for the triangle with equal masses at its vertices [34].
Consequently the mass-weighted Jacobi coordinates [17, 23, 32, 43, 50] version of the medians—Heron
formula is identical in form to [34] the usual (sides-)Heron formula.

2The first place some version of the medians-Heron formula is the second form of b) as an Exercise in Hobson [8], with
a later edition [9] carrying a trigonometric proof. Among modern textbooks, e.g. [15, 22] cover the medians-Heron formula.
E.g. [26] provides a geometric proof and an algebraic proof. a) and the Linear-Algebraic proof presented here are from [34].



1.4 Cevians and Stewart’s Theorem

Remark 1 Another way of arriving at Apollonius’ Theorem (8) is as a medians Corollary to Stewart’s
Theorem. The general case of which’s natural setting is for Cevians.

Definition 1 A Cevian [3, 4, 11, 12, 25, 31] is any line from a vertex of a triangle to its opposite side (if
needs be extended).

Notational Remark 1 See Fig 3.a) for notation for the general case. And Subfigs b)-d) for specific
examples, with notation for their line-interval lengths and concurrent points. In particular, medians are
among the Cevians, being those special Cevians that each bisect their corresponding side.

Cevians
a) In general b) Medians ¢) Altitudes d) Angle bisectors
A A A A
A
hy
ca

Y \

B L C L L L

and cycles ¢,, ¢, | and cycles m,, m, | and cycles A, h, | andcycles [, I,
G : centre of mass=| H: orthocentre I : incentre
1 barycentre = centroid

Figure 3:

Naming Remark 3 Indeed, the name ‘Cevian’ is a portmanteau of ‘Ceva’ and ‘median’.

Definition 1 The directed length between points P, Q is given by the following.

=~ PQ  if running from P to Q
PQ = {—PQ if running from Q to P ° (22)

Theorem D (Stewart’s Cevian-length Theorem) [5, 13, 22, 29, 31] a) Let A be a Cevian’s vertex
and L be the point at which the opposite side (extended) is cut. Then

AL? = %ABQ + %ACQ — BLIC. (23)

b) Using the corresponding likewise-directed length variables, the squared length of our Cevian is given by

? = gchrEbzfxy. (24)
a a
¢) Or equivalently,
a(l® + zy) = ab® + yct. (25)

Exercise 1 Check that a) = b) = c¢). And that Stewart’s Theorem indeed returns Apollonius’
Theorem in the case of medians.



1.5 Outline of the rest of this Article

Remark 1 The purpose of the current Series [45, 47, 46] — also referred to as Articles IT, IIT and IV — is to
conduct the following robustness test on Subsec 1.3’s proof. To what extent does this working generalize
upon passing from medians to Cevians?

Remark 2 In the current Article, we first form and study the Stewart matrix that encodes all cycles of
Stewart’s Theorem. We next find a 1-parameter family of equi-Cevians (Sec 3) each of which possesses a
Heron’s formula to the same extent that medians do: with F manifestly realized. We also observe that
(Sec 4) Heron’s formula extends to invertible T but elsewise arbitrary Cevian data. Now as a 2-tensor
transformation of the fundamental triangle matrix F under the inverse Stewart matrix T . The rest
of the current Series is outlined in Sec 5.

2 The ‘Stewart’ sides-to-Cevians transformation matrix

2.1 Dimensionless formulation

Remark 1 The Stewart matrix’s natural arena is for arbitrary triples of Cevians: one per vertex-opposite-
side pair. Let us denote this arena by
Ceva(3) ;

Ceva will be used elsewhere [47] to denote the arena of individual Cevians. The (Apollonius) sides—
medians involution J [34, 40, 42] thereby generalizes to arbitrary (Stewart) sides—Cevians transformations.
However, as we shall document below, none of the three properties of J used in Sec 1.3’s proof — symmetry
involutivity and commutativity with F' is generic.

Notational Remark 1 Let C be the vectors whose components are the lengths squared of our arbitrary
triple of Cevians,
Ca = ¢, and cycles . (26)

Notational Remark 2 Also let
£ = T and cycles n, ¢ : (27)
a
the fraction-of-a-side signed-ratio variables forming the vector & .

Proposition 1 The dimensionless formulation of Stewart’s Theorem is as follows.

a)
e = (& = 1)a® + &b + (1 = &), (28)

b) Or, in squared variables, the linear equation
Cy =¢( - 1)A+ B+ (1 —¢)C. (29)

Exercise 2 Prove this.

Proposition 2 The sides-to-Cevians transformation is

C-T-S. (30)
For Stewart matriz
§(6& - 1) § 1 =&
T =T := 1 - n(n — 1) 7 : (31)
¢ 1 - (¢ —1)

Proof Package the 3 cycles of Proposition 1.b)’s linear equations into a matrix equation. O



Remark 2 So far as we are aware, this is a new dimensionless formulation of the Stewart matrix. Corre-
sponding furthermore to a 3-parameter parametrization of Ceva(3)

Remark 3
detT = J[[(¢&—1)n +1]. (32)

cycles

Exercise 1 Prove this using basic algebra only.

2.2 A unique property of the medians

Proposition 3 The Stewart matrix T is symmetric iff the Cevians in question are all medians.

Proof Set
T =T" (33)

— where the T-superscript denotes transpose — and equate components. The diagonal components return
mere identities. While the off-diagonal components yield 2 copies of the following system.

1 1 0 ¢ 1
1 0 1 n] =1(1]. (34)
0o 1 1 ¢ 1

The matrix in question being invertible, there is a unique solution. Which is

1
¢ = 3 and cycles : medians . O (35)

2.3 A first two consequences

Remark 1 For other than the medians case, the Stewart matrix’s asymmetry renders transposition nec-
essary in formulating Heron’s formula for Cevian data.

Remark 2 It also turns out that a suitable generalization of the involution property is the following
Proposition’s condition.

Proposition 4

T T = k1 (36)
gives the following system of equations.
a) ; f
e - —npP 202 =+ ¢ - ¢ =0 andcycles. (37)
(54 —28 + €+ + 9 -2+ 1)3 = k* and cycles . (38)
b) Equivalently,
€(1 = &) +n(n—1)> =¢1 ~¢) andcycles. (39)
€26 — 1) + (n — 1) + ¢ = k¥? and cycles . (40)

Proof a) Multiplying out the matrices, the off-diagonal components yield two copies of (37). Whereas the
diagonal components return (38).

b) Factorize. And, for the second equation, then take the cube root of both sides. O



2.4 (Non)singular triples of Cevians

Definition 1 The singular T are precisely those IN for which
detT = detN = 0. (41)

The corresponding singular triples of Cevians form the arena of singular Cevian triples,
Sing(3) C Ceva(3) .

Whereas the nonsingular T are precisely those G for which
detT = detG # 0. (42)
The corresponding invertible triples of Cevians form the arena of nonsingular alias invertible Cevian triples,
Jnv(3) C Ceva(3), Ceva(3) = Jnv(3) u Sing(3) .

Remark 1 We show in Article III that Jnv(3) is 3-d whereas $ing(3) is just 2-d . This corresponds
to nonsingular triples of Cevians being generic; below we work solely within this generic case.

Remark 2 £k is not a free parameter, however, by the dilation-unimodular split. This is a type of
irreducible tensor split, and thus well-grounded in Representation Theory [14, 27]. Where unimodular
means of unit determinant. Within our 3-d arena Jnv(3) C Ceva(3) , this split is as follows.

G = (detG)Y?U . (43)
Where the unimodular Stewart matriz U is just defined by rearranging:
U = (detG) 3G . (44)

Proposition 5 a) Invertible matrices admit a dilation—unimodular split
G-D U. (45)

b) For invertible Stewart matrices, (36) takes the simplified form
U U-=1. (46)

¢) (45) is a fortiori a scale-rotation split.
d) The second equation (38) in (36)’s system takes the following more specific form.
(€617 + (n =17 + )" = (detG). (47)

Proof a)
G = (detG)PT = (detG)Y3(1-T) = ((detG)l/?’ﬂ) U.

Step 1 is by (43). Step 2 is an insertion of the identity. Step 3 is by associativity. Whose final term in
large brackets can be interpreted as a dilation D .

b) Divide through by 72 and then make 2 uses of the definition of unimodular matrix.
¢) By the uniqueness of inverse, b) is the orthogonality condition.

d) Equate coefficients to fix that k = (det G')'/? . Finally use Proposition 4.b)’s form for the left-hand-
side. O

Remark 3 By substituting (32) in the second of system’s equations (47), we arrive at a cyclic triple of
12th-order trinomials. This is coupled to the first equation’s cyclic triple of cubic trinomials. Generically,
this system is over-determined by a factor of 2: 6 equations in 3 unknowns.



3 The equi-Cevian case

3.1 The equi-Cevian solution

Proposition 6
£ =¢1, ie & =1n=¢(, (48)

solves the above system.
Proof In this case, the first equation readily reduces to the trivial identity 0 = 0 .

Substitute (48) in (31) to collapse the Stewart matrix to the following.

(6 —1) § L=
T = T(§1) = - §(& —1) 3 : (49)
3 1 - (& —1)
With determinant
detT(&) = T3 . (50)
Where
T =€ — ¢+ 1. (51)
Also the LHS of (47) collapses to
T?. (52)

So our second equation becomes just
(T)° = (7).
Which also readily holds identically. O

Naming Remark 4 Condition (48) turns out to be significant. Let us thus give this case a name: the
equi-Cevians. Meaning that they each cut their corresponding side with the same side-fraction ratio as
each other.

Notational Remark 1 We subsequently write E for Cequi and Q for Toqui = T(£1) = T(E) .

Remark 1 Equi-Cevians are uniquely parametrized by their common ratio’s value, thus forming a R of
distinct cases. Thereby, we are only considering a non-generic subset

Equi(3) C Ceva(3) . (53)
In Article III, this will be upgraded to a subspace condition.
Remark 2 The triple of medians, and the triple of sides are themselves examples of equi-Cevians. Medians

correspond to

Sides get represented twice,

the ambiguity of choosing the clockwise or anticlockwise sides to serve as Cevians.



3.2 Equi-Cevian data’s 1-parameter generalization of Heron’s formula

Proposition 7 In the equi-Cevian case, we have the following 1-parameter family of Heron’s formulae.
T2 = (detQ)™"*E" . Q- F-Q" - E. (54)

Proof Step -1 . Claim: det@Q # 0 .

For detQ = 72 . And T = 0 possesses just a complex pair of roots. Which are thus not realized by
any Cevians in the real Euclidean plane...

Step 0: Thus we can always meaningfully formulate the Cevians-to-sides transformation,

S=Q ' E: (55)
Next substitute this into Heron’s formula (6) to obtain the first step of the following.
T2 — (g—l.E)T.E. (Q'-E) = ET.Q—lT.E.Q* E =

ET .

P
o

E - (@@ *'E"-Q F Q"-E. (56)

T/Ql

Where the second step uses (21), and the third (36)’s proportionality. Finally, the fourth step evaluates
the coefficient of proportionality. O

Proposition 8 In the equi-Cevian case,

a)

1
I~
Q|
)
Il
\]l\')
gl
E

b) Equivalently,

W -F- Wt =F. (58)

Where W is a unimodular equi-Cevian matrix.
Proof a) Substitute in (49) and (7). Then apply matrix multiplication, factorization and (51).
b) Divide through by 72 and make 2 uses of the definition of unimodular matrix. O

Remark 1 This result is a weaker substitute for the median case’s commutativity condition (17), which
however turns out to satisfy our purposes below. As necessitated by @ no longer being symmetric (a
third consequence!)

LR )

Theorem 1 (Equi-Cevian Heron’s Formulae) [Anderson 2018] Consider equi-Cevians e; and cycles
corresponding to the side-split ratios having equal values (48). Then we have the following 1-parameter
family of Heron’s formulae for the area of the triangle based on e; as data.

a)

72 = O*||E||p” . (59)
For )
o=T"= (& -¢+1) . (60)
b)
T* = 0% > e (2e — e) . (61)
cycles
¢) Or, in the most traditional format,
Area = (€ — €+ 1) " Ve(e —ea) (e — ) (€ — ec) - (62)
Where 1 1
€ = 3 lei75(6a+eb+ec). (63)
cycles



Proof a) Use (50) and Proposition 8 in Proposition 7 to obtain
1 = 7 *E" - T°F - E = T*E" F-E = 0*||E||r”.
Where the second step gathers terms. And the third uses (60) and the definition of || || .

b)-¢) Run backwards along the Introduction’s set of formulations of the standard (sides-data) Heron’s
formula. O

Example 1 £ = 0 and 1 are the two available ways of encoding sides. In the first case,
o=(0-0+1)"" = (0-0+1)" =17 =1.
In the second case,
o= (12-14+1)" = (1-14+41)"=(@+1)" =1 =1,

Thereby the standard Heron’s formula is recovered.

Example 2 While for medians, £ = 1/2, so

(O S N VNN O

By which the medians-data Heron’s formula is recovered.

Naming Remark 5 ¢ is the equi-Cevians’ subcase of the semi-Cevimeter. Le. the half-sum of our triple
of Cevian intervals’ lengths. In immediate analogy to the semi-perimeter for sides and the semi-medimeter
for medians.

Naming Remark 6 A truer name for Theorem 1 is Fqui-Cevians data Triangle-Area Formulae.

Remark 2 Let us finally check how the medians case of Proposition 8’s condition indeed recovers Sec 1.3’s
commutativity condition.

\-/m
™
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5
I
|
o
~
)
Il
o
-
o

i
\9\
I~

Il
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|
[l
I~
[l
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|
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4
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=~ w
Sl
S~—
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Sl
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4
<
!
|
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<
4
<
I
|
S|
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4 Invertible but elsewise general Cevian data’s 3-parameter gen-
eralization of Heron’s formula

Remark 1 We can also obtain a more general type of Heron’s formula as follows. Alongside asymmetry
rendering transposes necessary, non-involutivity renders inverses necessary. And ‘general’ is in the sense of
belonging to Jnv(3) rather than Sing(3) .

Theorem 2 (Invertible-Cevians Heron’s Formulae) [Anderson 2019] For T nonsingular, Heron’s
formula in terms of elsewise arbitrary Cevian length data is given by the following.

a)

T° = (detG)™*3C" -GV -E-G'-C = (detG)?||Cligair Fgor (64)
b)
T _ (detG)*l/g \/QT.EflT,E,Qfl,é
—1/3 (65)
= (e[ (6 = 1)n +17) IClig 5.5

Proof a) The zeroth to second steps of Proposition 7’s proof extend from @ to all invertible G . Finish
off with the definition of || || .

b) The unimodality split still holds, so we can insert this into a). Next apply expression (32) for the
determinant. Finish off with the definition of || || . O

Naming Remark 7 A truer name for Theorem 2 is invertible-Cevians data triangle-area formulae.

Impasse 1 We can however no longer interpret the unimodal matrix as an involution or the weakening
(36). The third step of Proposition 7 is thereby blocked.

Remark 2 Let us finally parallel how [34] denoted the medians-Heron Formula’s numerical prefactor by
/£ until its nature was better understood. By rewriting Theorem 3 as

T = I{/HEHQflTAE.Qfl . (66)

Remark 3 Finally, to relate to the ‘coverpage’ Fig 1,
-1/3
A = K = (detG)™'/? = [T -1 +1] . (67)

cycles

Exercise 37 We suggest that the Reader pauses awhile here, to see if you can find any reasons why O
or K should or should not be a (function of) some Jacobi mass ratio.

11



5 Conclusion

5.1 Sphynxnopsis

The ‘Apollonius’ sides-to-medians transformation matrix O has 3 special properties. Namely, symme-
try, proportionality to an involution J , and commutativity with the fundamental triangle matrix F
These combine to guarantee that the standard (sides-data) Heron’s formula is partnered by the medians-
data Heron’s formula. With both built directly out of F' |, by which each has the most traditional and
recognizable square root formulation as well.

Medians generalize to Cevians. The analogue of T is now the ‘Stewart’ sides-to-Cevians transformation
matrix, T . For which we have provided a 3-parameter dimensionless-ratio formulation. Forming the
arena (space of mathematical objects) Ceva(3)

In answer to the Abstract’s opening question, medians are special in the following ways. Symmetry holds
for no other triples of Cevians. While the other two properties weakly extend to the 1-parameter family
€Equi(3) of equi-Cevians: those Cevian triples that each cut their corresponding side with the same side-
fraction ratio as each other. Equi-Cevian data consequently supports a new 1-parameter family of Heron’s
formulae also built directly out of F , as per Theorem 1. I.e. directly manifesting the Heron quadratic
form.

Also invertible Cevian data, forming the 3-d subset Jnv(3) , supports a new 3-parameter family of
Heron’s formulae as per Theorem 2. Now in general not built directly out of F | but rather its 2-tensor
transformation under the inverse of the invertible Stewart matrix, G~' . Or, in an alternative formulation,
under the inverse of the unimodular Stewart matrix, U™

Naming Endnote 1 What do we mean by ‘weakened’? On the one hand, we have replaced medians’
involutivity by equi-Cevians’ relation (36). Which is homogeneous similarity in the Geometrical sense of
orthogonality up to proportion. On the other hand, we have replaced medians’ F-commutativity by equi-
Cevians’ (57). Which is a weighted version of 2—tensor invariance for F under the sides-to-equi-Cevians
matrices @ [36]. Corresponding to the homogeneous-Euclidean alias Cartesian notion of tensors.

If (36) holds, then (57) can be recast as

|l
ol
\«OI\
I
ol

(68)

Reading that F' is self-similar, now in the matrix sense of ‘similar’. By which [36] medians’ O ’s involu-
tivity and F-commutativity have been replaced by @ being similar and F being doubly-similar!

Geometrical Endnote 1 Our two weakened conditions can furthermore be jointly packaged as follows.

} | (69)

The first equation here is by insertion of the identity into our first weakened condition. The second equation
here is by the first weakened condition converting our second weakened equation into this form. In our
joint packaging, the two equations are more closely analogous. Their interpretation is that we are seeking

W under which both the Euclidean metric ( 3-d , on the arena of Cevian triples) and the fundamental
triangle matrix are invariants.

T

&

T

S

P
<=
-

Naming End Note 2 Finally, Theorem 2 for invertible Cevians involves in contrast tensor transformation
laws and for the general-linear and special-linear notions of tensor for a) and b) respectively.

12



5.2 Pointers

Pointer 1 The concurrent Cevians also play a distinguished role, as per Article II. These form a 2-
parameter family
Concur(3) C Ceva(3) .

Some new particular cases of equi-Cevians, and their Heron’s formulae, are included.

Pointer 2 How Jnv(3) , Sing(3), €Equi(3) and Concur(3) are realized within the arena of all triples
of Cevians Ceva(3) is considered in Article III. In the process, further unique properties of the sides and
especially the medians are revealed. Both Article II and Article III have interplay with objects familiar
from Routh’s Theorems [7, 16, 15]. In the process, a further such object gets added to this Routhian
repertoire, alongside a new ‘4-areas Theorem’ for Affine Geometry [48].

Open Question 1 Does the system

admit further solutions? This is a compact way of formulating our system (37, 47).

Open Question 2 Does the system
U.-F-U =F (71)

admit further solutions? Like the previous system, this consists of 6 equations of up to 12th order in 3
unknowns.

Open Question 3 Does the coupled version of the previous two Open Questions admit further solutions?
This can now be written as
} (72)

Now constituting a system of 12 equations of up to 12th order in 3 unknowns: now over-determined
by a factor of 4 . In particular, each such would also possess a Heron’s formula which directly manifest

T

<

T

s

I 1=
<) S
I 1=

Pointer 3 Article IV reveals where the reciprocal-altitudes-Heron formula [28] is hiding within arenas of
Cevians. That many cases of geometrical interest couple a nonlinear equation to the linear Stewart system
is also entertained there. With the significance of the linear Stewart system surviving some nonlinearities
but not others.

Pointer 4 See also [37, 41] for quadrilateral counterparts of the current Series’ robustness test.
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