

A brief Linear-Algebraic Proof of Heron's Formula

Edward Anderson*

Abstract

A brief new Linear-Algebraic proof of Heron's formula is offered. This method immediately yields a second area formula.

* Dr.E.Anderson.Maths.Physics *at* protonmail.com . Institute for the Theory of STEM. v2 date stamped 30/04/2024

Structure 1 The most standard formulation of Heron's formula [1, 2] is

$$\text{Area} = \sqrt{s(s-a)(s-b)(s-c)} = \sqrt{s \prod_{\text{cycles}} (s-a)} . \quad (1)$$

Where

$$s := \frac{1}{2} \sum_{\text{cycles}} a = \frac{1}{2}(a+b+c)$$

is the *semi-perimeter* of the triangle.

Expanding, multiplying by 4 and then squaring,

$$T^2 = \sum_{\text{cycles}} A(2B-A) = (A \ B \ C) \begin{pmatrix} -1 & 1 & 1 \\ 1 & -1 & 1 \\ 1 & 1 & -1 \end{pmatrix} \begin{pmatrix} A \\ B \\ C \end{pmatrix} . \quad (2)$$

Where the first form is the expanded Heron's formula, with $A = a^2$ and cycles. And the second is the '*Heron-Buchholz quadratic form*' [6]. Whose coordinate-independent form is

$$T^2 = \underline{S} \cdot \underline{H} \cdot \underline{S} . \quad (3)$$

For (sides)² vector \underline{S} . Useful [8] tetra-area variable T . And '*Heron-Buchholz matrix*' \underline{H} .

Structure 2 The cycle of cosine rules can be reformulated as follows.

$$2 \begin{pmatrix} \underline{b} \cdot \underline{c} \\ \underline{c} \cdot \underline{a} \\ \underline{a} \cdot \underline{b} \end{pmatrix} = 2 \begin{pmatrix} bc \cos \gamma \\ ca \cos \beta \\ ab \cos \alpha \end{pmatrix} = \begin{pmatrix} b^2 + c^2 - a^2 \\ c^2 + a^2 - b^2 \\ a^2 + b^2 - c^2 \end{pmatrix} = \begin{pmatrix} -1 & 1 & 1 \\ 1 & -1 & 1 \\ 1 & 1 & -1 \end{pmatrix} \begin{pmatrix} A \\ B \\ C \end{pmatrix} \quad (4)$$

In coordinate-free form,

$$2 \underline{D} = \underline{C} \cdot \underline{S} . \quad (5)$$

For *dot-product vector* \underline{D} . And *cosine rule cycle matrix* \underline{C} .

Remark 1 Observe that $\underline{C} = \underline{H}$. We consequently sense an opportunity here to find a Linear Algebraic proof of Heron's formula; see e.g. [3, 9, 5, 4, 7] for assorted other proofs.

Proof Apply $\underline{D} \cdot$ to (5). So, using $\|\cdot\|$ to denote Euclidean norm,

$$2\|\underline{D}\|^2 = \frac{1}{2} \underline{S} \cdot \underline{C}^2 \cdot \underline{S} . \quad (6)$$

But

$$\underline{C}^2 = \begin{pmatrix} -1 & 1 & 1 \\ 1 & -1 & 1 \\ 1 & 1 & -1 \end{pmatrix} \begin{pmatrix} -1 & 1 & 1 \\ 1 & -1 & 1 \\ 1 & 1 & -1 \end{pmatrix} = \begin{pmatrix} 3 & -1 & -1 \\ -1 & 3 & -1 \\ -1 & -1 & 3 \end{pmatrix} . \quad (7)$$

Thus

$$\sum_{\text{cycles}} (4(\underline{a} \cdot \underline{b})^2 + 2AB - 3A^2) = 0. \quad (8)$$

Next, *Lagrange's identity* is

$$(\underline{a} \cdot \underline{b})^2 = \|\underline{a}\|^2 \|\underline{b}\|^2 - \|\underline{a} \times \underline{b}\|^2 \quad (9)$$

Combine (9), the cross-product area formula, and (8) to obtain

$$\sum_{\text{cycles}} (4(AB - T)^2 + 2AB - 3A^2) = 0.$$

But this trivially rearranges to the expanded Heron's formula. \square

Remark 2 To arrive at the most usually encountered formulation of Heron's formula, one just undoes three moves given above. I.e. one now takes the positive square root, divides by 4 and factorizes to obtain (1).

Remark 3 Readers unfamiliar with the name 'Lagrange identity' will however see that it is but a ready consequence of the geometrical formulation of dot- and 2-d-cross-product. Alongside the basic trigonometric identity $\sin^2 \gamma + \cos^2 \gamma = 1$.

Remark 4 It is of course standard that Heron's formula can be proven from the cosine rule. The above provides a Linear Algebra version of such a proof. The first article in [10] uses our Linear Algebra approach to show that, conversely, Heron's formula implies the cycle of cosine rules.

Remark 5 We comment further on the multiple conceptual interpretations of the matrix $C = H$ in [10].

Remark 6 Finally, if we apply $\underline{S} \cdot \cdot$ to (5) instead, the following drops out.

$$\begin{aligned} T^2 &= \underline{S} \cdot \underline{C} \cdot \underline{S} = 2 \underline{S} \cdot \underline{D} = 2 \left(\prod_{\text{cycles}} a \right) \sum_{\text{cycles}} a \cos \alpha \\ &= 2abc(a \cos \alpha + b \cos \beta + c \cos \gamma). \end{aligned} \quad (10)$$

Where the first step is by Heron's formula, and the third is by evaluating the dot product and forming cycles.

End Remark Thus two area formulae for the triangle drop out of our simple Linear-Algebraic considerations. Our second area formula is less interesting, since it involves 6 data functions instead of 3. We leave its more detailed study to another occasion.

References

- [1] Heron, alias Hero, of Alexandria, *Metrica* (60 C.E.)
- [2] T.A. Heath, *A History of Greek Mathematics. Volume 2, from Aristarchus to Diophantus* (C.U.P., Cambridge, 1921).
- [3] C.H. Raifaizen, "A Simpler Proof of Heron's Formula", *Mathematics Magazine*, **44** 27 (1971).
- [4] H.S.M. Coxeter, *Introduction to Geometry* (Wiley, New York 1989).
- [5] T.F. Havel, "Some Examples of the use of Distances as Coordinates for Euclidean Geometry", *J. Symbolic Computation*, **11** 579 (1991).
- [6] R.H. Buchholz, "Perfect Pyramids", *Bull. Austral. Math. Soc.* **45** 353 (1992).
- [7] G.F. Simmons, "The Formulas of Heron and Brahmagupta", in *Calculus Gems: Brief lives and memorable Mathematics* (M.A.A., Washington, D.C. 2007).
- [8] E. Anderson, "Two New Perspectives on Heron's Formula", arXiv:1712.01441 For the updated version, see <https://wordpress.com/page/conceptsofshape.space/1244> ;
"The Smallest Shape Spaces. III. Triangles in the Plane and in 3-d", arXiv:1711.10115. For the updated version, see <https://wordpress.com/page/conceptsofshape.space/1229> .
- [9] J. Lee and Y. Lee, *Geometric Proof of Heron's Formula Using Square and Pythagorean Theorem*, *Int. J. High School Research.* **6** 47 (2024).
- [10] E. Anderson, "The Fundamental Triangle Matrix" (2024), <https://wordpress.com/page/conceptsofshape.space/1306> ;
"The Fundamental Triangle Matrix Commutes with the Lagrange and Apollonius (Sides-Medians Involution) Matrices. With implications for deriving Kendall and Hopf Theorems." (2024), <https://wordpress.com/page/conceptsofshape.space/1308> ;
"Only 2 of the Fundamental Triangle, Lagrange and Apollonius Matrices are Independent. With ensuing Algebras, Irreducibles and Splits" (2024), <https://wordpress.com/page/conceptsofshape.space/1310> .