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Abstract
We recently derived that triangleland is S

2 by just considering the eigentheory of Heron’s
formula for the triangles’ area, A . We now show that none of Brahmagupta’s, or Bretschnei-
der’s first or second area formulae extend this derivation. The underlying situation is that
N -a-gonland is CP

N − 2 . Among which CP
1 = S

2 recovers the triangleland sphere. This
generalization follows from e.g. Kendall’s extremization or the generalized Hopf map.

We further explain the above non-extension in terms of total area no longer being a shape
quantity for quadrilaterals. Its place has been taken by the square root of sums of squares of
subsystem areas, S We further clarify what shape quantities, A and S are in Representation-
Theoretic terms. Isom

(
CP

N − 2)
gives su(N − 1) , with the corresponding shape quantities

constituting an adjoint rep. This algebra has a geometrically-distinguished so(N − 1) of
democracy transformations. The first two Casimirs supported by which are A2 and S2 .
They are mathematically analogous to total AM squared J2 in 2- and 3 − d respectively.

Casson showed that 2-d triangleland’s S
2 separately generalizes as follows. To S

d ( d + 1 )/2 − 1

d-simplexlands at the topological level. For these, d-volume provides a shape quantity, which
can be calculated by the Cayley–Menger formula. Whose first two nontrivial instances are the
Heron and della Francesca–Tartaglia formulae. Even-d is required so as to have an eigentheory;
even here, just dimension counts suffice to preclude on-sphere conditions dropping out. Over-
all, triangleland enjoys a large number of dimensional coincidences that neither N -a-gons nor
d-simplices extend.

The current Article is thus a useful check on how far the least technically involved derivation
of the smallest nontrivial shape space can be taken. This is significant since Kendall’s Shape
Theory is a futuristic branch of mathematics. With substantial applications in both Statistics
(Shape Statistics) and Theoretical Physics (Background Independence: of major relevance to
Classical and Quantum Gravitational Theory).
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1 Introduction
Diagonalizing Heron’s formula for triangle area was recently demonstrated [86] to suffice as first
principles to derive both of the following.

1) Kendall’s Little Theorem [32, 36, 51] from Kendall’s Shape Theory (see also [48, 55, 62, 64, 67,
71, 76, 80, 78, 79, 82, 83, 84, 86, 87, 91, 85, 88, 92, 90, 101, 105, 93, 103, 106]) that the space of
triangles modulo similarities is a sphere,

shape( 2, 3 ) = S
2 . (1)

At both the Topological and Metric-Differential-Geometric levels of structure.

2) The Hopf map [16, 38, 58, 30, 53, 59, 45]
η : S

3 −→ S
2 . (2)

Whose mathematics recurs in Dirac’s monopole [17] the 3-body problem [22, 33, 46], and other
applications [39, 44, 52, 59, 77]. And which is a first useful nontrivial example of various Differential-
Geometric and Topological structures.

We outline this demonstration in Sec 2. See Appendices A and B for more about 1) and Appendix
C for more about 2). In each case with valuable generalizations. With Appendix D descending to
the extra-special case of S2 .

♠ ⋄ ♣

The current Article considers the extent to which these results generalize to Shape Theory with other
spatial dimensions d and point-or-particle numbers N . Generalizations away from triangleland
in 2-d are of two distinguished kinds.

A) N -a-gons, for which Kendall’s Theorem ([32, 51] and the Appendix) gives that
S( 2, N ) = CP

N − 2 . (3)

B) d-simplexes, for which Casson [51] showed that at the topological level,
S( d, d + 1 ) = S

d ( d + 1 )/2 − 1 . (4)

♠ ⋄ ♣

The minimum nontrivial case of A) are quadrilaterals, as treated in Sec 3. For these, we show that
Bretschneider’s second area formula is sequentially more satisfactory than Bretschneider’s first and
Brahmagupta’s for this application. But still falls short of requirements to provide a derivation of
the topology and geometry of the space of quadrilaterals.

We further explain this non-extension in Sec 4. In terms of area’s mass-weighted version α as
normalized by the moment of inertia (MoI) ι ,

A := α
ι ,

not being a shape quantity [67, 74] for quadrilaterals. Its place has been taken by [49, 74]

S :=

√∑3
A = 1 α2

A

ι . (5)

This sum is over the 3 two-Jacobi-vector subsystems supported by the quadrilateral. We further
clarify the reason that S features in the theory of quadrilaterals in Representation-Theoretic terms
in Sec 5.

♠ ⋄ ♣
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We next consider whether there is a Casson’s Theorem generalization of the Heron proof of
‘Kendall’s Little Theorem’ in Secs 6 and 7. For the 3-simplexes alias tetrahaedrons, volume both
has a general formula in terms of separations. I.e. the della Francesca–Tartaglia volume formula
[4, 5, 20, 89]. And provides a shape quantity

V := ν
ι3/2 (6)

(for V the mass-weighted volume). We show that this does not however support eigenvectors. By
which the Heron derivation of the triangleland shape space does not generalize to tetrahaedronland
either.

In Sec 7, we extend this analysis to the general d-simplexes. For which the d-volume is given by
the Cayley–Menger generalization [7, 13, 15, 20, 34, 89] of the della Francesca–Tartaglia volume
formula. d-volume moreover provides a shape quantity

Vd := νd

ιd/2 . (7)

Eigenvectors can now be defined for the even-d cases. The dimension count does not however work
out for this to give on-sphere conditions corresponding to Casson’s result for the topology of the
spaces of d-simplexes. Finally Secs 4 and 7 point to a long string of dimensional coincidences behind
the Heron derivation.
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2 Outline of Triangleland shape space from Heron’s formula
2.1 Notation for the arbitrary triangle

l

Figure 1:

Notational Remark 1 Consider an arbitrary triangle △ ABC , denoted as in Fig 1. Using
sI △= aI , I = 1 to 3 to denote a, b, c will also be useful for us.

Definition 1 The semi-perimeter is

s := a + b + c

2 = 1
2

3∑
I = 1

aI . (8)

Notational Remark 2 When unambiguous, let us use the shorthand Area( ABC ) = Area for
the area of △ ABC .

2.2 Heron’s formula
Theorem 1 (Heron’s formula)

Area =
√

s ( s − a ) ( s − b ) ( s − c ) . (9)

Remark 1 Squaring, introducing the tetra-area variable

T := 4 Area , (10)

and expanding out, we obtain the following.

Proposition 1 (Expanded version of Heron’s formula) [11]

T 2 =
∑

cycles

(
2 a2 b2 − a4 )

=
∑

cycles
A ( 2 B − A ) . (11)

Remark 1 Using basic structures from Linear Algebra, a further reformulation is as follows.

Proposition 2 (Quadratic form version of Heron’s formula) [Buchholz 1992]

T 2 = ||S||H 2 = S · H · S . (12)

This ‘Heron–Euler–Buchholz quadratic form’ is in terms of the squared-sides 3-vector

S :=

 A
B
C

 :=

 a2

b2

c2

 . (13)
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And the ‘Heron–Euler–Buchholz matrix’ [40]

H :=

-1 1 1
1 -1 1
1 1 -1

 . (14)

Naming Remark 1 A first truer name for Heron’s formula is side-data triangle area formula. From
which first truer names for the above quadratic form and matrix derive as well. Euler is mentioned
as the first person to give the solution in integers [6] to the system now encoded by this matrix.

2.3 Diagonalizing Heron’s formula gives Kendall’s Little Theorem
Remark 1 Set

0 = det ( H − λ I ) . (15)

This yields eigenvalues λ = 1 with multiplicity 1 , and λ = -2 with multiplicity 2 .

The corresponding orthonormal eigenvectors are, respectively, as follows.

1√
3

 1
1
1

 ,
1√
2

 1
-1
0

 ,
1√
6

 1
1

-2

 . (16)

Remark 2 The diagonalizing geometrical variables are thus as follows.

Ã = A + B + C√
3

, B̃ = A − B√
2

, and C̃ = A + B − 2 C√
6

. (17)

In terms of these, Heron’s formula also takes the following form.

Proposition 3 (Diagonal Heron formula) [Anderson 2017]

T =
√

Ã2 − 2
(

B̃2 + C̃2
)

. (18)

Remark 3 Introduce rescaled ratio variables [84] whose denominator is proportional to the moment
of inertia.

X :=
√

2 B̃

Ã
=

√
3 ( A − B )

A + B + C
, Y := T

Ã
, Z :=

√
2 C̃

Ã
= A + B − 2 C

A + B + C
. (19)

Then (18) becomes
X2 + Y 2 + Z2 = 1 . (20)

I.e. the on-S2 condition.

Remark 4 We have thus found an alternative route to the following.

Corollary 1 (‘Kendall’s Little Theorem’) The space of triangles modulo similarities is S2 .

Remark 5 So the diagonalized normalized version of Heron’s formula is the same as the triangleland
sphere condition. To get the whole sphere, investigating coordinate ranges and their significance as
triangles reveals that we need to consider vertex-labelled mirror-images-distinct triangles.
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2.4 ... and the Hopf map
Corollary 2 X , Y and Z as the 3 Hopf quantities.

Proof Relative Jacobi coordinates drop out of a second diagonalization involving relative separation
variables [82, 96]. Pick the mass-weighted [37] and moment of inertia (MoI) normalized [82, 97]
version of these νi . With i = 1, 2 for triangles. Then X , Y and Z take the following
standard form for the Hopf quantities.

X = 2 ν1 · ν2 . (21)

Y = 2 ν1 × ν2 . (22)

Z = ν2
2 − ν1

2 . (23)

Exercise 1 Check the standard result that the expressions (21-23) add up to 1 .

Remark 2 Heron’s formula thereby provides not only ‘Kendall’s Little Theorem’ but also the Hopf
quantities. And thus also the corresponding Hopf map. Which is the smallest and most commonly
encountered of the various Hopf maps, η , of (2) and Fig 8 This is via the Hopf quantities’ relation
to this map through composition with some simpler maps as per Appendix 8.

A Heron–Jacobi–Hopf–Kendall unification has thus been attained. By which both Kendall’s Little
Theorem and the Hopf map can be derived from Heron’s formula using just high school mathematics.
This is interesting enough for the current Article to ask whether this simplest known approach to
Kendall and Hopf generalizes in the quadrilateral or d-simplex setting.

Remark 3 Triangleland’s shape quantities [65, 67, 84] coincide with the Hopf quantities. A Ge-
ometrical interpretation for the Hopf quantities in the current context is as follows. Y is the
mass-weighted tetra-area per unit moment of inertia. Z is an ellipticity: a purely relative-ratio
quantifier of whether the triangle is tall or flat. X is an anisoscelesness: a relative-angle-dependent
measure of departure from isoscelesness. Anisoscelesness and ellipticity can moreover also be inter-
preted as the two eigenvectors that the Heron map H possesses in addition to the total moment
of inertia.

Remark 4 Since the -2 eigenvalue has multiplicity 2 , the corresponding eigenspace is 2-d . As
such, there are other basis choices for its eigenvectors. One can however then ask the question of
whether there exists any basis for which the diagonalized Heron’s formula takes on a geometrically-
standard form. Then ellipticity and anisoscelesness are picked out. One could also pin down this
particular basis by asking for the eigenvectors to be the simplest possible functions of invariants.
Then Jacobi coordinates pick out anisoscelesness, with orthonormality then fixing the form to be
taken by the last eigenvector to be ellipticity. A further 2 distinct arguments for this basis choice
are given in [98].
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3 Quadrilateral area formulae
3.1 Notation for the arbitrary quadrilateral

l

Figure 2:

We provide this in Fig 2. Now sides aI have I run from 1 to 4 . And yet relative separations
sA have A run from 1 to 6 .

3.2 Sides-data cyclic-quadrilateral area formula (Brahmagupta)
Theorem 1 Sides-data cyclic-quadrilateral area formula1 For a cyclic quadrilateral,

Area =
√

( s − a ) ( s − b ) ( s − c) ( s − d ) . (24)

Remark 1 Setting d = 0, this returns Heron’s formula.

Proposition 4 In expanded form,

T2 = 4 ( a b + c d )2 −
(

a2 − c2 + b2 − d2 )2 = a(2)
2 − 2 a(4) + 8 aΠ . (25)

Where

a(p) :=
4∑

I = 1
(aI)p . (26)

for whichever power p . And

aΠ :=
4∏

I = 1
aI . (27)

Caveat 1 Unlike for Heron’s formula, the second expanded form precludes dependence on
SI := (sI)2 alone. This feature simplified repackaging Heron’s formula as a quadratic form in

squared variables [86]. So Brahmagupta’s area formula not having this feature poses a complication.

Caveat 2 Brahmagupta’s area formula is limited to cyclic quadrilaterals.

Remark 2 In starting to move around this limitation, we observe that for a general quadrilateral,
SSSS – four sides – is not sufficient data [99]. Considering the rhombi suffices to reach this conclusion.
Thus there can exist no area formula for general quadrilaterals without bringing in some further
datum.

1This was discovered in 7th century A.D. India by Brahmagupta [3, 23, 31, 43]. And is usually referred to as
Brahmagupta’s area formula.
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3.3 Bretschneider’s first area formula
Remark 1 One alternative in bringing in further data to get around Caveat 2 is to involve angles
between sides. This leads to the following.

Theorem 3 (Bretschneider’s first area formula) [8, 43, 31] (1842) For a convex but elsewise
general quadrilateral,

Area =

√
( s − a ) ( s − b ) ( s − c ) ( s − d ) − a b c d cos2

(
α + γ

2

)
. (28)

Remark 2 As indicated in Fig 2, α and γ are opposite angles. Thus for a cyclic quadrilateral,
their sum is π by an elementary Theorem of Euclid’s. In this case,

cos π

2 = 0 (29)

then accounts for the last term of Bretschneider’s first area formula vanishing in Brahmagupta’s.

Naming Remark 1 The new term admits the following Geometrical interpolation.

( acyclicness ) := a b c d cos2
(

α + γ

2

)
: (30)

the correction term to Brahmagupta’s area formula.

Corollary 1 The area of a quadrilateral with given sides is maximized when it is cyclic.

♠ ⋄ ♣
Remark 3 Two reasons why Bretchneider’s first area formula does not provide a useful extension
of Heron’s formula for Shape-Theoretic use are as follows.

Caveat 3 It involves conceptually heterogeneous angular information, as a multiplicative factor on
one summand.

Caveat 1′ a b c d does not depend on the squares of the sides.

3.4 Relative-separation data
Remark 1 Caveats 1′ and 3 are moreover remedied by making use instead of diagonal length data.
This is homogeneous with side length data through both constituting separation data. Indeed, in
separational alias Lagrangian and dual constellational approaches [82] – an accurate description of
Shape Theory – no distinction is to be made between sides and diagonals. So modelling purely in
terms of unqualified separations serves here.

Remark 2 Heron’s formula can be thought of not only as the side-data triangle area formula, but
also as the relative-separation-data triangle area formula. This rests on these two notions coinciding
for triangles. For N = 3 does not support any distinction between sides and relative separations.
But the general N -a-gon possesses diagonals as well as its N sides. Giving a total of

#( relative separations ) =
(

N
2

)
= N ( N − 1 )

2 .

Remark 3 To have equality between side and relative-separation counts,

N = N ( N − 1 )
2 ⇒ 0 = N ( N − 3 ) ⇒ N = 0 or 3 .

So, in particular, this counting coincidence for triangles is gone forever for N ≥ 4 : diagonals are
a persistent feature.
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3.5 Relative-separation-data convex-quadrilateral area formula (RSCQAF)
Remark 1 Quadrilaterals possess the following relative-separation data extension of Heron’s for-
mula.

Theorem 4 (Relative-separation-data convex-quadrilateral area formula) [18].2 For a
convex but elsewise arbitrary quadrilateral,

Area =
√

( s − a ) ( s − b ) ( s − c )( s − d ) − 1
4 ( a c + b d + e f ) ( a c + b d − e f ) .

(31)
Remark 2 This reduces to the side-data cyclic-quadrilateral area formula (24) iff the quadrilateral
is cyclic. For the two subcases involved are nested by cyclic ⇒ convex. Leaving us needing to
consider the RSCQAF’s extra term’s two factors’ vanishing conditions. The second factor being
zero amounts to Ptolemy’s Theorem [2] [23]. I.e. that

e f = a c = b d ⇔ ABCD is cyclic . (32)

While the first factor can only be zero if the following holds (Esercise 2!). The quadrilateral is T
or O : a triple or maximum coincidence-or collision respectively. Both of which are trivially cyclic.

Remark 3 The corresponding relative-separations formulation for the cyclator is thus as follows.
Namely,

acyclicness = 1
4 ( a c + b d + e f ) ( a c + b d − e f ) . (33)

Proposition 5 The expanded version of RSCQAF is

T 2 = e2 f2 −
(

a2 − b2 + c2 − d2 )2 = E F − ( A − B + C − D )2
. (34)

Remark 4 RSCQAF thus generalizes Heron’s in a second way, matching Proposition 1’s form. It
consequently admits the following further formulation matching Proposition 2.

Proposition 6 [Anderson 2018] The tetra-area squared of a quadrilateral is given by the following
‘RSCQ quadratic form’.

T 2 = ||S||R2 = S · R · S . (35)

Where S is now the following ( separation )2 6-vector.

S :=


A
B
C
D
E
F

 :=


a2

b2

c2

d2

e2

f2

 . (36)

Which lives in separationspace [96]. And 6 × 6 ‘RSCQ matrix’ alias ‘Bretschneider matrix’

R :=


-1 1 -1 1 | 0 0
1 -1 1 -1 | 0 0

-1 1 -1 1 | 0 0
1 -1 1 -1 | 0 0
0 0 0 0 | 0 2
0 0 0 0 | 2 0

 . (37)

Exercise 3 Derive (34) and that the matrix in (35) is (37).
2This is often referred to as Coolidge’s area formula, though in fact Bretschneider [8, 12] already had another

formula Linear-Algebraically equivalent to this. See [102] for further explanation of this point.
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3.6 The corresponding eigentheory
Remark 1 Setting

( R − λ 1 )x = 0 , (38)

the RSCQ matrix’s eigenvalues and eigenvectors are as follows. We can solve this separately for its
2 × 2 and 4 × 4 block. Obtaining the following eigenspectrum.

λ = 0 with multiplicity 3 , and -2 , 2 , 4 each with multiplicity 1 . (39)

The corresponding eigenvectors are

1√
2


0
0
0
0
1
1

 ,
1√
2


0
0
0
0
1

-1

 ,
1
2


-1
1

-1
1
0
0

 , (40)

for -2 , 2 and 4 respectively. And e.g.

1
2


1
1
1
1
0
0

 ,
1√
2


1
0

-1
0
0
0

 ,
1√
2


0
1
0

-1
0
0

 , (41)

for the 3-d 0-eigenspaces.

Remark 2 These eigenvectors correspond to the following geometrical quantities.

1√
2

(
e2 + f2 )

= 1√
2

2∑
∆ = 1

D∆ = 1√
2

( diagonal squares sum ) (42)

1√
2

(
e2 − f2 )

= 1√
2

( diagonal squares difference ) = 1√
2

( diagonal ellipticity ) . (43)

1
2

4∑
I = 1

(−1)I AI = 1
2

(
−a2 + b2 − c2 + d2 )

= 1
2 ( alternating side squares sum ) =

1√
2

( difference of adjacent sides’ ellipticities ) . (44)

1
2

(
a2 + b2 + c2 + d2 )

= 1
2

4∑
I = 1

AI 1
2 ( sides2 sum ) . (45)

1√
2

(
a2 − c2 )

= 1√
2

( ellipticity of an opposite-sides pair ) . (46)

1√
2

(
b2 − d2 )

= 1√
2

( ellipticity of the other opposite-sides pair ) . (47)

Where DA takes values E, F . And the first I in (44) is a power while the second is a tensor
index.

Exercise 4− Derive Remark 1’s results and Remark 2’s interpretations.
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3.7 Discussion
Remark 1 Brahmagupta’s area formula is only for cyclic quadrilaterals. Bretschneider’s first and
second area formulae extend this to convex quadrilaterals. the second – the RSCQAF – presents
some conceptual advantages over the first, in particular though being based on pure-separations
data.

Remark 2 As we shall see in the next section, it is easy to go from 6 separations to 5 ratio
quantities on S5. So our objective is to find a further condition so as to pass to 4 fully non-
redundant variables. For the triangle, diagonalizing Heron’s formula succeeded in doing this. Is
diagonalizing the RSCQAF capable of doing the same?

Remark 3 Observe however that the RSCQAF differs from Heron’s area formula in not making
equable use of all separations. Rather, the diagonals enter it in a different manner to the sides.
This is tied to Bretschneider’s convexity requirement, which uniquely allots the diagonals to be the
interior separations.

Remark 4 In contrast, for N ≥ 4 , Kendall’s Shape Theory is really about complete N -a-gons,
the minimum nontrivial example of which is the complete quadrilateral. By which no diagonals-sides
distinction can be made. Each generic complete quadrilateral encodes various quadrilaterals at once,
among which convex, crossed and reflex ones are represented. Bretschneider’s formulae’s convexity
restriction is not then a problem, since one could apply it to convex representatives of complete
quadrilaterals.

Caveat 4 The RSCQAF is not invariant under change of representative.

Caveat 5 The RSCQAF does not make equable use of separations.

Remark 5 These are two interlinked reasons why the RSCQAF may not be well-adapted to Kendall’s
Shape Theory.
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4 Shape quantities for quadrilaterals
4.1 Preshape space
Definition 1 The dilatational group comprises the translations and dilations in the following semidi-
rect product [54] form.

Dilatat(d) = Tr(d) ⋊ Dil . (48)

Remark 1 Identifying the mathematical form of each of these constituent groups’s underlying sets,

Dilatat(d) = R
d ⋊ R+ . (49)

Definition 2 Kendall’s preshape space [32, 51, 97] is the result of quotienting constellationspace
(104) by the dilatational group.

Preshape( d, N ) = q( d, N )
Dilatat(d) . (50)

Remark 2 This further works out to be [51, 97]

Preshape( d, N ) = Rd N

Rd ⋊ R+
= Rd n

R+
= S

d n − 1 . (51)

Which is a sphere at both the topological and metric levels. We thus arrive at S3 for triangles and
S5 for quadrilaterals.

4.2 Preshape, and 1-d shape, quantities
Remark 1 In 1-d , since there are no continuous rotations, preshape space is furthermore equivalent
to shape space. I.e.

shape( 1, N ) = Preshape( 1, N ) = S
n − 1 . (52)

Remark 2 In 1-d , the n relative Jacobi scalars ρi are Euclidean invariants. As in Sec 2, let us
normalize these using

ρ :=
√

ι , (53)

which furthermore plays the role of [82] preshape space radius. This leaves us with n quantities 3

νi := ρi

ρ
(54)

Automatically subject to the on- Sn − 1 condition,∑
n

i = 1 (νi)2 = 1 . (55)

Remark 3 This working furthermore generalizes for d-dimensional space at the level of preshape
space [32, 82], to the following.

νi := ρi

ρ
. (56)

Subject to the on-Sd n − 1 condition. Namely,

d n∑
Γ = 1

|| νΓ ||2 =
n∑

i = 1

d∑
a = 1

|| νi a ||2 = 1 . (57)

Where || || is the relativespace = Rd n norm.
3These can also be found in the Molecular Physics literature, under the names internal rotations and democracy

transformations [49]. With ρ referred to as the hyperradius; see [97] for truer names.
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4.3 Nontrivial Euclidean invariants
Remark 1 For d ≥ 2 , ρi · ρj are Euclidean invariants. There are

n ( n + 1 )
2 (58)

distinct such. We can furthermore package them into the Euclidean matrix E . Whose indices
i = 1 to n run over the relative Jacobi vectors’ labels, with its components then taking the

following form.
Ei j :=

(
ρi · ρj

)
. (59)

Example 1 For N = 3 , E has 3 independent elements. And 2 invariants. Firstly,

tr(E) = ρ2 = ι . (60)

Secondly,
det(E) = ρ1

2 ρ2
2 − ( ρ1 · ρ2 )2 =

∣∣∣ ρ1 × ρ2

∣∣∣2
∝ α2 . (61)

The second equality here is Lagrange’s identity, whereas α is the mass-weighted area of the triangle.

Example 2 For N = 4 , E has 6 independent elements.

And 3 invariants, as follows.
tr(E) = ρ2 = ι . (62)

II(E) =
∑

cycles
| ρ1 × ρ2 |2 ∝

∑
cycles

α1 2
2 . (63)

And
det(E) = [ ρ1 , ρ2 , ρ3 ] 2 ∝ V2 . (64)

[ , , ] denotes scalar triple product. The first equality in the last equation is a generalization
of Lagrange’s identity. This third invariant is however just zero in 2-d .

4.4 A first few nontrivial shape invariants
Remark 1 Normalizing the Euclidean matrix by a dimensionally-matching power of ι gives the
similarity matrix S . Whose indices run over the relative Jacobi vectors’ labels. While its compo-
nents are take

Si j :=
(

νi · νj
)

. (65)

Here trace is just a number, N .

Example 1 For N = 3 , the similarity matrix has just 1 other invariant. I.e.

det(S) = | ν1 × ν2 |2 ∝ α2

ι2 . (66)

Example 2 For N = 4 , the similarity matrix possesses 2 other invariants, as follows.

II(S) =
∑

cycles
| ν1 × ν2 |2 ∝

∑
cycles

α1 2
2

ι2 . (67)

And
det(S) = [ ν1 , ν2 , ν3 ] 2 ∝ V2

ι3 . (68)
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Remark 2 In general, such matrix elements are not geometrically independent. They can be
interpreted as supplying an associated linear space containing conserved quantities.

♠ ⋄ ♣

Remark 3 These are not the only possibilities. The matrix A with relative Jacobi vector label
index components

Ai j = ( ρi × ρj ) (69)

has Equiareal-Geometric [35] significance. Being antisymmetric, this has

n ( n − 1 )
2 (70)

independent components. For N = 3 , it has only 1 component, whereas for N = 4 , it has
3 . In all cases,

tr(A) = 0 (71)

by the antisymmetry of A .

Example 1′ For N = 3 , the only other invariant is as follows.

det(A) =
∣∣∣ ρ1 × ρ2

∣∣∣2
= α2 . (72)

Example 2′ Whereas for N = 4 , there are 2 . Firstly,

det(A) =

∣∣∣∣∣∣∣∣∣
0 −

(
ρ1 × ρ2

)
⊥

−
(

ρ1 × ρ3

)
⊥(

ρ1 × ρ2

)
⊥

0 −
(

ρ2 × ρ3

)
⊥(

ρ1 × ρ3

)
⊥

(
ρ2 × ρ3

)
⊥

0

∣∣∣∣∣∣∣∣∣ . (73)

Secondly,

II(A) =
∣∣∣ ρ1 × ρ2

∣∣∣2
+

∣∣∣ ρ2 × ρ3

∣∣∣2
+

∣∣∣ ρ3 × ρ1

∣∣∣2
=

∑
k > l

ρk × ρl =
∑

k > l

αk l .

(74)
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5 Repackaging in terms of SU(3) and SU(N) Representa-
tion Theory

5.1 Shape Quantities
Remark 1 The complex formulation

U = E + i A (75)

gives an n2 of quantities. These can be split into 1 scale variable, ρ2 = ι . And

n2 − 1 = N ( N − 2 ) (76)

shape quantities.

In 2-d , the latter pick out an adjoint representation of the following shape space isometry group
[57].

Isom
(
CP

n − 1 )
= SU(n)

Cn
. (77)

For Cn the cyclic group of order n . This n2 − 1 of shape quantities consists of the components
of S . And those of A as normalized by ι :

νi × νj .

Example 1 For triangles, this returns the 3 Hopf quantities: anisoscelesness, normalized area and
ellipticity [86, 84].

Example 2 For the quadrilateral, these comprise 3 anisoscelesnesses, 3 areas, and 1 ellipticity.
Alongside 1 linear combination (LC) of 2 ellipticities. These last 2 quantities are diagonal.
In Particle Physics parlance, they are respectively the ‘3-component of the isospin’ I3 and the
‘hypercharge’ Y [47].

Caveat 6 For the triangle, the shape space is of dimension 2 . While many other associated spaces
have coincident dimension 3 . For instance, the 3-d space of sides coincides with the space of
relative separations. In contrast, the relationalspace and the space formed by the shape quantities
coincide to form another 3-d space. From the first pair, 1 relation on side data – Heron’s formula
– at least counts out right to send us to the shape space. While diagonalizing Heron puts the
on-sphere relation on the second pair’s space.

But for quadrilaterals, this quartet of spaces have dimensions 4, 6, 5 and 8 . So many manoeuvres
that worked for triangles do not even compatibly count out any more.

Let us next consider how all of this quartet’s counts grow with N .

#( independent relational coordinates ) = dim(R( 2, N ) ) = 2 N − 3 . (78)

#( shape quantities ) = dim
(

Isom
(
CP

N − 2 ) )
= dim( SU(n) )

= n2 − 1 = ( N − 1 )2 − 1 = N ( N − 2 ) . (79)

So we require
N = N ( N − 1 )

2 = 2 N − 3 = N ( N − 2 ) .

Or at least some subset of these equalities, if we are to keep some of the triangle case’s benevolent
features.
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N = 3 is indeed the unique solution for the whole set. By Subsec 3.4’s reconceptualization, the
relative separations are to supplant the sides, so we can drop the first count. N = 3 remains the
unique solution of the whole of this smaller equation set. The only partial solutions afforded are
N = 0, 1 and 2 . We leave it to the Reader to figure out which pairs each of these corresponds

to. But these are all trivial models. So in particular, for N ≥ 4 , none of the triangle case’s above
benevolent features are available.

♠ ⋄ ♣

Proposition 7 [Littlejohn and Reinsch 1995]

( N − 1 ) ( N − 2 )
2 (80)

of the N -a-gon’s shape quantities form an equiareally-significant SO(n) restricted representation.

Example 1 For triangles, this SO(2) comprises the area variable.

Example 2 For quadrilaterals, this SO(3) comprises the 3 area variables.

Remark 3 The N -a-gon has symmetric nondiagonal anisoscelesnesses partnering the antisymmetric
areas. Numbering

#( anisoscelesnesses ) =
(

N − 1
2

)
= ( N − 1 ) ( N − 2 )

2 (81)

Remark 4
#( ellipticities ) =

⌊n

2

⌋
=

⌊
N − 1

2

⌋
. (82)

And
#( nontrivial LCs of ellipticities ) =

⌊
n − 1

2

⌋
=

⌊
N − 2

2

⌋
. (83)

Where ⌊ ⌋ is the floor function. And which respectively generalize to SU(3) ’s isospin 3-component
I3 and hypercharge Y .

Remark 5 The quadrilateral shape quantities are representable by Gell–Mann λ-matrices [21].
And the N -a-gon shape quantities by general-N λ-matrices.
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5.2 Casimirs
Structure 1 Crucially, SU(p) possesses a total of p − 1 Casimirs.4 So via its SU( N − 1 )
content, the full isometry group of N -a-gonland possesses N − 2 Casimirs. Among which,⌊n

2

⌋
=

⌊
N − 1

2

⌋
. (84)

are associated with the ‘democratic-transformation’ SO(n) subgroup’s restricted representation.

Proposition 8 In 2-d for N = 4 , II(S) commutes with all the other shape quantities.

Remark 1 This can be readily deduced from Littlejohn and Reinsch’s account [46], so it has been
known since at least 1995.

Proposition 9 [Anderson 2018] II(S) is moreover a Casimir. Specifically that of the SO(3)
democracy subgroup corresponding to the A . It is thereby mathematically analogous to total
angular momentum in 3-d space.

Notational Remark 1 By which let us subsequently refer to this II(S) as J 2 !

♠ ⋄ ♣

Remark 2 This gives further Representation-Theoretic insight into the quantity which has replaced
( tetra-area )2 in passing from triangles to quadrilaterals. And which has replaced volume in pass-

ing from 3-d to 2-d 4-body problems [49]. Thus clarifying the content of the quantity called a
’remarkable extra commuting quantity’ in in the Molecular Physics literature [46].

Remark 3 Observe furthermore that this J 2 is not some function of the area of the whole
quadrilateral but rather the sum of squares of its triangle subsystems’ areas.

Caveat 7 For triangles, normalized total area is among the shape variables. In contrast, for quadri-
laterals, normalized total area is not even among the shape quantities. This state of affairs moreover
persists for all larger N -a-gons. So normalized total area is only a shape quantity in the case of
triangles. This undermines the RSCQAF having Shape-Theoretic significance in parallel to Heron’s
formula’s

Caveat 8 ( tetra-area )2 is moreover the triangle system’s sole Casimir. This suggests pivoting
research direction as follows. Generalize Heron’s formula via viewing its subject – area – as a
quantity whose key property is that it normalizes to give a Casimir. I.e. not by pursuing N -a-gons’s
area formulae but rather by pursuing their Casimirs! Starting with quadrilaterals’ J 2 ; we leave
this to a subsequent Article [104].

Aside 1 Likewise, J 2 might be more interesting to extremize than normalized area in generalizing
[82, 83, 84]’s Calculus considerations.

♠ ⋄ ♣

Remark 8 The Veronese embedding provides a further relation between shape quantities [27, 74].
This Projective-Geometric technique moreover generalizes to the Veronese–Whitney embedding for
higher N -a-gons. This is already well-known in the Shape Statistics literature [78, 91].

Caveat 9 So, while Heron’s formula for the area of a triangle suffices to understand triangleland’s
topology and geometry, the above projective structure, beyond the scope of area formulae, first
appears in the corresponding study of quadrilaterals.

4See e.g. [61] for an outline of what these are.
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6 Tetrahaedra and the della Francesca–Tartaglia volume for-
mula

6.1 Notation for the arbitrary tetrahaedron

l

Figure 3: Tetrahaedron notation.

Notational Remark 1 Consider an arbitrary tetrahaedron denoted as in Fig 2. We set this up
such that a , b , c meet at the vertex P . And d , e , f concur pairwise at the other vertices
Q , R and S .

6.2 The della Francesca–Tartaglia volume formula

l

Figure 4:

Remark 1 In terms of this, the standard [4, 5, 89] della Francesca–Tartaglia volume formula sim-
plifies to

U3
2 =

∣∣∣∣∣∣∣∣∣∣
0 1 1 1 1
1 0 a2 f2 d2

1 a2 0 b2 c2

1 f2 b2 0 e2

1 0 c2 e2 0

∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣
0 1 1 1 1
1 0 A F D
1 A 0 B C
1 F B 0 E
1 0 C E 0

∣∣∣∣∣∣∣∣∣∣
. (85)

Proposition 10 (Expanded form of della Francesca–Tartaglia volume formula) [Anderson
2018] This can furthermore be rewritten as follows.
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U3
2 = Ti j k Si Sj Sk , (86)

Where
U3 := 12

√
2 V ol (87)

for volume Vol . S is again given by (36). T is the totally-symmetric Tartaglia 3-tensor,
Ti j k = T( i j k ) (88)

Whose components in our standard basis are as follows.

T =




0 0 0 0 0 -2
0 0 0 -1 1 1
0 0 0 1 -1 1
0 -1 1 0 0 1
0 1 -1 0 0 1
0 1 1 1 1 -2


0 0 0 -1 1 1
0 0 0 0 -2 0
0 0 0 1 -1 -1

-1 0 1 0 1 0
1 -2 -1 1 -2 1
1 0 -1 0 1 0


0 0 0 1 -1 1
0 0 0 1 1 -1
0 0 0 -2 0 0
1 1 -2 -2 1 1

-1 1 0 1 0 0
1 -1 0 1 0 0


0 -1 1 0 0 1

-1 0 1 0 1 0
1 1 -2 -2 1 1
0 0 -2 0 0 0
0 1 1 0 0 -1
1 0 1 0 -1 0


0 1 -1 0 0 1
1 -2 1 1 -2 0

-1 1 0 1 0 0
0 1 1 0 0 -1
0 -2 0 0 0 1
1 0 0 -1 1 0


-2 1 1 1 1 -2
1 0 -1 0 1 0
1 -1 0 1 0 0
1 0 1 0 -1 0
1 1 0 -1 0 0

-2 0 0 0 0 0





. (89)

Exercise 5− Derive (89).

Remark 2 See Fig 4.a) and b) for coordinate-free renditions of (86) and (88), in vertical Penrose
birdtracks.

Remark 3 Straightforwardly, there are no isotropic tensors of rank 3 in 6-d , so questions of
diagonalization are moot.

Notational Remark 1 The ν used in the Introduction is the mass-weighted analogue of the Vol
used above.
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7 d-simplices and their Cayley–Menger d-volume formulae
7.1 Introduction
Remark 1 We finally extend consideration to d-simplexes. The Heron and della Francesca–
Tartaglia formulae here extend to the arbitrary-d Cayley–Menger formula.

Definition 1
Ud := kd × ( d-Volume ) :=

(
2d/2 d !

)
× ( d-Volume ) . (90)

Remark 2 In terms of this, the standard [7, 13, 15, 20, 89] Cayley–Menger d-volume formula
simplifies to

Ud
2 = abs

∣∣∣∣∣∣∣∣∣∣∣

0 1 1 1 1
1 0 ( 0, 1 )2 ... ( 0, n )2

1 • 0

1
... • 0 ( n − 1, n )2

1 • ... • 0

∣∣∣∣∣∣∣∣∣∣∣
=: abs

∣∣∣∣∣∣∣∣∣∣∣

0 1 1 1 1
1 0 A0 1

2 ... A0 n
2

1 • 0

1
... • 0 An − 1, n

2

1 • ... • 0

∣∣∣∣∣∣∣∣∣∣∣
.

(91)
Where ( a, b ) stands for distance between points a and b . And the heavy dot denotes that each
lower triangular component coincides with the corresponding explicitly provided upper triangular
component by symmetry.

Remark 3 The first value of kd supporting a nontrivial Cayley–Menger formula is k2 = 4 .
Tetra-area is thus not only a Heron quantity and the numerator of a Hopf quantity but also the first
nontrivial Cayley–Menger quantity.

Remark 4 The Cayley–Menger formula can also be rewritten as
Ud

2 = Ci1 ... id
Si1 ... Sid . (92)

Where

S :=
A1
...

Aq

=
a1

2

...
aq

2
(93)

the ( separations )2 q-vector. For

q := C( N, 2 ) = N ( N − 1 )
2 = d ( d + 1 )

2 : (94)

the number of separations for N = d + 1 point-or-particles. And
Ci1 ... id

= C( i1 ... id ) : (95)

the totally-symmetric Cayley–Menger d-tensor. (14) and (85) provide the explicit form for the first
two nontrivial examples of this.

Remark 5 See Subfigs 5.a) and b) for coordinate-free renditions of (92) and (95) respectively.

Remark 6 In forming an infinite series of totally symmetric tensors, these bear some analogy
to multipole expansion tensors [50]. Those are however spatial tensors, whereas Cayley–Menger
tensors are configuration space tensors. It follows that the multipole expansion resides within a
fixed dimension (usually d = 3 in applications). In contrast, Cayley–Menger tensors increase in
dimension according to (94)’s count.

Exercise 6 Use a computer to obtain the components of C for the 4- and 5-simplexes.
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l

Figure 5:

7.2 Eigentheory, where possible
Remark 7 Let us next diagonalize the Cayley–Menger tensors. I.e. solve

Ci1 ... id
= λ Ii1 ... id

. (96)
Where Ii1 ... id

is the d-dimensional matchingly totally-symmetric isotropic tensor. See Subfig
c) for a coordinate-free rendition, where I is the identity-matrix coordinate-free notation for the
Kronecker delta tensor.

Remark 8 This gives separate odd- and even-d cases.

A) For odd-d , there are no rank-d isotropic tensors in dimension d , so (96) is moot.

B) For even-d ( > 0 ), there are, so we do have an eigenvalue problem. Which produces(
d ( d + 1 )

2

)d/2
(97)

eigenvalues. This is to be compared with the Casson sphere corresponding to

d ( d + 1 )
2 (98)

quantities summing to 1 . [ ι remains available as a scale variable along the Casson diagonal.]

So, for d > 0 even, the following is required.(
d ( d + 1 )

2

)d/2
= d (d + 1 )

2 . (99)

I.e. (
d ( d + 1 )

2

)d/2 − 1
= 1 . (100)

Which can only be solved for d ∈ 2N by
d = 2 . (101)

Thus, even just combinatorially, the extent of the Cayley–Menger–Casson coincidence is just the
Heron–Kendall–Casson coincidence that yields the triangleland sphere.
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8 Conclusion
It was recently shown [86] that for triangle constellations in 2-d , the form taken by the correspond-
ing shape space – a sphere – can be derived from Heron’s formula. This is a fourth derivation of this
result: ‘Kendall’s Little Theorem’. The other three are the two outlined in the Appendix: Kendall’s
extremization [51] and using the Hopf map. And setting up an indirectly-formulated similarity me-
chanics action for the problem to be subjected to Lagrangian-level reduction [62] (or similar [67, 81]).
The Hopf map itself is moreover derived from Heron’s formula in the process. Its three coordinate
functions – mass-weighted tetra-area, anisoscelesness and ellipticity in the Shape-Theoretic context
– arise as follows. As the subject of Heron’s formula and as the two non-unit eigenvectors of the
Heron–Buchholz matrix respectively.

♠ ⋄ ♣

In the current Article, however, we show that this fourth derivation is a one-off, as follows.

1) Triangleland benefits from there being 3 of each of the following. Sides, relative separations,
independent relational coordinates and shape quantities. But for quadrilaterals, there are 4 6 5
and 8 of these! Nor does any higher N -a-gon have any numerical coincidences between these.

2) At the level of shape space geometries, triangleland is simplified by CP
1 = S2 . Which good

fortune does not repeat for quadrilaterals or for any higher N -a-gons. One is here left needing to
deal with CP

N − 2 : the general Kendall Theorem (Appendix B). So some methods of arriving at,
and comprehending, this 2-d space are ‘spherical’ rather than ‘projective’ and so fail to generalize
to projective cases. Also scaled triangleland is then the cone over S2 , and thus R3 again.5 While
scaled quadrilateralland is a distinct space: the cone over CP

N − 2 .

3) At the level of area formulae, Brahmagupta’s is too specialized and Bretschneider’s first uses
heterogeneous data. Neither of these can be expressed solely in terms of separation2 variables.
Bretschneider’s second area formula uses just separation data, as is clear from its truer name
relative-separations-data convex-quadrilateral area formula (RSCQAF). And depends purely on
separations2 . But it does not make equable use of separations, by distinguishing sides and diago-

nals.

4) Unlike the Heron–Euler–Buchholz matrix, the RSCQ matrix is not invertible. In more detail, it has
zero as an eigenvalue with multiplicity 3 . So its diagonal form inter-relates just 4 quantities. Nor
does the ensuing condition directly help us in finding that quadrilateralland is CP

2 . There is also
a mismatch between a formula for convex quadrilaterals and a shape theory about all quadrilaterals.

5) For triangles, shape space is 2-d and separationspace = sidespace is 3-d . So 1 relation
suffices to take us from separationspace to shape space. But for quadrilaterals, shape space is 4-d
and separationspace is 6-d . So using an area formula to descend from separationspace to shape
space is under-determined.

6) Total area (mass-weighted and MoI-normalized to A ) is among the shape variables for the
triangle. But not for the quadrilateral. For the triangle, A is furthermore a Hopf quantity – and
its square is the system’s sole Casimir.

To generalize this, we need to consider the democratic so(N − 1) subalgebra [49] of su(N − 1)
. Itself arising from Isom

(
CP

2)
[26]. In the N -a-gon context, an adjoint rep of su(N − 1)

is realized by the shape quantities [74]. And the successor of A2 as so(N − 1) Casimir for
an N -a-gon is as follows. The sum of squares of areas of constituent triangle subsystems, again
mass-weighted and MoI-normalized, S2 . So now S2 manages to be a Casimir without S being
a shape quantity.

5Albeit this is not flat, though it is conformally flat [33].
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Thus following the Casimirs, triangle area’s natural successor for quadrilaterals is, rather, the min-
imum nontrivial example of S . Involving 3 constituent triangle subsytems. We leave detailed
study of this for a future occasion [104]. This item 6) also renders moot that the quadrilateral area
formula considered in the current Article are not an exhaustive set [12, 95]. Though the Linear
Algebra that drops out of considering this extended set is interesting enough to be the subject of
another article, [102].

♠ ⋄ ♣

Triangeland S2 is also the first nontrivial d-simplexland alias d-basisland [92]. I.e. the
N = d + 1 (102)

diagonal, which Casson showed to be topologically
S

d ( d + 1 )/2 − 1 . (103)

So ‘Kendall’s Little Theorem’ may furthermore be viewed as the unique case in which both Kendall’s
Theorem and Casson’s Theorem apply. Reasons for non-extension of the Heron proof of Kendall’s
Little Theorem to higher simplexlands are as follows.

1) The next case along on the diagonal of simplexlands (Fig 7) is tetrahaedronland. This admits the
della Francesca–Tartaglia volume formula. As is most easily seen from recasting Heron’s formula as
a determinant and generalizing dimensionally. This can be reformulated in terms of a (new, as far as
the Author is aware) ‘totally symmetric Tartaglia 3-tensor’ in the 6-d separation space supported
by tetrahaedral constellations. This does not however admit eigenvalues and eigenvectors since there
are no isotropic tensors of rank 3 in 6-d .

2) More generally, the entire simplexland diagonal is populated by the d-volume formulae of Cayley–
Menger [7, 13, 15, 20, 34, 89]. That these can be reformulated in terms of the (also new, as far as the
Author is aware) infinite series of Cayley–Menger totally-symmetric d-tensors. That mass-weighted
d-hypervolume divided by a matching power of the moment of inertia is a suitable shape quantity for
each d . All Cayley–Menger formulae make equable use of separation data, in which sense they are
superior to the RSCQAF. The even-d cases among these furthermore possess isotropic tensors of the
right dimension-and-rank so as to have eigenvalue problems. These eigenvalue problems, however,
do not have the right dimensionality to produce on-Sd ( d + 1)/2 − 1 conditions. Other than in the
d = 2 case in which the Heron derivation of ‘Kendall’s Little Theorem’ is recovered.

3) That the Hopf map generalizes along the N -a-gonlands plays a deep underpinning role in these
being more geometrically understood than the diagonal of simplexlands. This is with particular
reference to Kendall’s Theorem being a Metric Differential-Geometric as well as Topological result,
whereas Casson’s Theorem is solely Topological. This, and accumulated knowledge about the metric
geometry [26, 29] and associated linear methods [74] for CP

N − 2 , renders N -a-gonlands far more
amenable to physical study than d-simplexlands. There is one sense in which this is unfortunate:
that tetrahadreons – of the 4-body problem in 3-d – are more directly relevant to nature than
N -a-gons in 2-d . And one sense in which this is fortunate is as follows. That N -a-gons provide

a ‘shape representation’ [60] for Quantum-Information-Theoretic qu-N -its [39, 52, 77].

♠ ⋄ ♣

All the other three derivations of Kendall’s Little Theorem mentioned in the Introduction do gen-
eralize to N -a-gons. With the Hopf case proceeding via one of the usual generalizations of the
Hopf map, as per Fig 8.c-d). The N -a-gon versions of these derivations are covered likewise in the
Appendices and in and [51, 62, 67, 81].
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A Suite of configuration spaces for N-body problems
Remark 1 Carrier space Cd is some at-least-provisional model for the structure of space. It is
referred to as absolute space in the case of physical space. Though e.g. Euclidean Geometry and
Probability Theory also have notions of carrier space notions, such as ‘the Euclidean plane’ and
‘sample space’; see [82] for further discussion. Indeed, Rd is the space most often cast in the role
of carrier space, with Euclidean Geometry’s plane being the 2-d subcase of this. Employing a
manifold md instead adds considerable scope to what can be modelled.

Definition 1 Constellationspace is the product of N copies of this carrier space. I.e.

q
(
md, N

)
=

N×
I = 1

(
md

)N

. (104)

Each point of which models a figure formed by N points on md : a constellation. Or, if these
points are materially realized, a figure formed by N particles (classical, nonrelativistic).

Remark 2 Constellationspace (see [67, 82] for reviews) is a simple instance of configuration space
[19, 28].

Remark 3 In Kendall’s Shape Theory [32, 36, 51] constellationspace is considered for md = Rd

with the group of similarities Sim(d) furthermore quotiented out. The corresponding shape spaces
– less trivial, reduced, configuration spaces – are thus of the following form.

S( d, N ) = q( d, N )
Sim(d) = ×N

I = 1 R
d

Sim(d) = Rd N

Sim(d) . (105)

Kendall’s work remains rather more familiar in the Shape Statistics literature [32, 36, 48, 51, 55, 71,
80, 78]. Though related work has also appeared in other fields e.g. Mechanics and Molecular Physics
[46, 49, 56, 75, 62, 67, 92]. And in e.g. [62, 67, 66, 70, 73, 81] modelling some aspects of General
Relativity’s Background Independence [25, 24, 41, 42, 72, 81, 94].

Theorem 0 (Kendall’s Little Theorem) The shape space of vertex-labelled mirror-images-
distinct triangles in R2 is [32, 36, 51]

S( 2, 3 ) = S
2 . (106)

For some context, we provide a small lattice of geometrical groups acting on flat space in Fig 6.a).
With the corresponding quotients in Subfig b) comprising a suite of intermediary configuration
spaces. Among these intermediaries, preshape space was already outlined in Sec 4.1.

24



l

Figure 6:

25



l

Figure 7:

Remark 4 Fig 7 gives the ( d, N ) grid of shape spaces at the topological level. Therein, S0
k

denotes the k-dimensional hemisphere.
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B Kendall’s geometric extremization proof
Proposition 1 Preshape space is straightforwardly a sphere (51). This carries furthermore the
extrinsically-defined chordal metric. Or the topologically-equivalent [51] intrinsically-defined great
circle metric,

D( P, Q ) = arccos( P, Q ) . (107)

For P, Q arbitrary points on the sphere.

Proposition 2 2-d shape space S( 2, N ) then carries the following quotient metric.

D( Q( P, Q ) ) = minR ∈ Rot(2) D( P, R(Q) ) = minR ∈ SO(2) arccos( P, R(Q) ) . (108)

Kendall shows furthermore that this takes the following form by carrying out a basic Calculus
extremization.

cos D( Q(z), Q(w) ) = | ( z · w )C |
||w||C||z||C

. (109)

For

( w · z )C :=
n∑

i = 1
zA w̄A . (110)

Where the bar denotes complex conjugate. And || ||C is the corresponding norm. See [51, 82] for
what z is in the N -a-gon context.

Remark 1 A small perturbation
w = z + δw (111)

brings about the following small change.

δD2 = sin2 δD + O( (δD)4 ) = 1 − cos2 D( Q(z), Q( z + δz ) ) + O( (δz)4 ) . (112)

Thus using (109)

= 1 − | ( z · ( z + δz )C |2

||z||C2 || z + δz ||C2 (113)

So expanding

= ||z||C ||δz||C − | ( z · δz )C |2

||z||C4 + O( (δz)4 ) . (114)

Finally take the limit as δz −→ 0 to obtain the natural Fubini–Study metric in standard homo-
geneous coordinates. I.e.

ds2 =
||z||C ||dz||C − | ( z · dz )C |2

||z||C4 . (115)

Changing homogeneous coordinate patch when necessary, it can be ascertained that this recovers
the entirety of CP

N − 2 .

Remark 2 A second proof follows from the Hopf map, in the extended HC sense of Fig 8.a-b).
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C Hopf maps

l

Figure 8:

Remark 1 The map that Hopf emphasized [16] is the Hopf spheres map HS (Fig 8).

Remark 2 Our figure includes also the map from the ambient R4 for the S3 . To the less
obviously realized ambient R3 for the S2 . Which we term the Hopf Cartesian map HC .

Remark 3 The Uk also displayed are unit vector maps to the corresponding Sk .

Remark 4 Finally, the Ck are cone maps from Sk .

Remark 5 See [38, 58] for brief pedagogical expositions of the Hopf map, [17, 22, 33, 46, 39, 44, 52,
59, 68, 77] for applications, and [59, 53, 30, 45] for more advanced theorization.

Remark 6 In deriving the generalized Kendall’s Theorem in the Hopf manner, the Fubini–Study
metric arises by projection along the fibres: now a Bundle-Theoretic construction.6

Remark 7 All of this Appendix generalizes to the
S

2 n − 1 −→ CP
n − 1 (116)

Hopf map (Subfig c) for N -a-gons (Subfig d) providing a proof for the general case of Kendall’s
Theorem.

6See furthermore e.g. [38, 77] as regards obtaining the Fubini–Study metric from Kähler first principles. There is
for now no known Shape-Theoretic first principle for N -a-gonland’s Kähler potential, thus providing us with a new
research question [100]
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D The triangleland subcase
Remark 1 Regardless of which route we derived the generalized Kendall Theorem by, for N = 3 ’s
single z variable, the Fubini–Study metric collapses to the following.

ds2 = |dz|2

( 1 + |z|2 )2 . (117)

Remark 2 Then using the polar coordinates representation

z = R ei Φ , (118)

we obtain the following expression for the metric.

ds2 = dR2 + R2dΦ2

4 ( 1 + R2 )2 . (119)

This is readily identified as the spherical metric in stereographic polar coordinates.

Remark 3 Finally using the venerable substitution

R = tan Θ
2 , (120)

we recover the the following up to a constant of proportion. The standard spherical coordinates
form of the metric,

ds2 = dΘ2 + sin2 Θ dΦ2 . (121)

This makes sense within the previous Appendices’ context by the accidental topological-and-geometrical
relation

CP
1 = S

2 . (122)
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