

A 4-Areas Theorem for Affine Geometry

Edward Anderson*

Abstract

Equi-Cevians possess a third area ratio on top of the two that are accorded values by Routh's Theorems. By which the concurrency alias collinearity object can be written as a function of 4 areas. Or 3 area ratios, with the further benefit that such are affine invariants.

* Dr.E.Anderson.Maths.Physics *at* protonmail.com . Institute for the Theory of STEM

1 [Transversals], [collinearity] and their Theorems

Notational Remark 1 Let A, B, C denote the vertices of a triangle \triangle . Thereupon, let $[T]$ denote the following projective-dual portmanteau. Of a triple of transversals (alias Menelians) T and co-transversals (alias Cevians) \bar{T} . Let [collinearity] denote the corresponding portmanteau of collinearity and concurrency.

Remark 1 $[T]$ then possesses the following [collinearity] criteria of Menelaus and of (Hud-)Ceva [1, 3, 7, 5].

$$\lambda \mu \nu =: \mathcal{C} = [\text{sign}] . \quad (1)$$

Notational Remark 2 Here $\text{sign} = -1$ and $\bar{\text{sign}} = 1$. And

$$\lambda := \frac{BL}{LC} . \quad (2)$$

is the *co-transversal (Cevian) signed-ratio variable*. For L the point at which the co-transversal cuts the opposite side BC (possibly extended). Also μ, ν are the cycles of λ . Finally \mathcal{C} is the [concurrency] object, alias Hud-Ceva and Menelaus object [10].

2 Routh's [Acollinearity] Theorems

Notational Remark 1 The *naïve [acollinearity]* is

$$[\mathfrak{a}_a] := \mathcal{C} - [\text{sign}] . \quad (3)$$

Where \mathfrak{a}_a is the portmanteau of the acollinearity \mathfrak{a}_i and the aconcurrency \mathfrak{a}_u . Let us also denote the area of a triangle X by $A(X)$.

Remark 1 Both cyclic triples of $[T]$ form their own triangles. Routh's [Acollinearity] Theorems [3, 2] then give expressions for the area ratios

$$[\mathfrak{R}_a] := \frac{A([T])}{A(\triangle)} . \quad (4)$$

These Theorems can be jointly formulated as [10]

$$[\mathfrak{G}_a] = [\mathfrak{a}_a] [\mathfrak{c}_a] . \quad (5)$$

Notational Remark 3 The *geometrical [acollinearity]* $[\mathfrak{G}_a]$ is the portmanteau of $\mathfrak{G}_i := \mathfrak{R}_i$ and $\mathfrak{G}_u := \sqrt{\mathfrak{R}_u}$. And the *Routhian [acollinearity] scale-factor* $[\mathfrak{c}_a]$ is the portmanteau of the following.

$$\mathfrak{c}_i := \prod_{\text{cycles}} (1 + \lambda)^{-1} , \quad \mathfrak{c}_u := \prod_{\text{cycles}} (1 + \lambda(1 + \mu))^{-1/2} . \quad (6)$$

Remark 2 For what the original statements of these Theorems look like, and their conceptual repackaging into (5), see [10].

Remark 3 The above four Theorems are all part of Affine Geometry [6, 12]. Ratios of areas, such as $[\mathfrak{R}_a]$, enjoy the further property of being *affine invariants* [13].

3 Equi-Cevians and their Heron's formula

Remark 1 A triple of co-transversals is *equi-Cevian* if

$$\lambda = \mu = \nu. \quad (7)$$

An equivalent statement in side-fraction variables,

$$\xi := \frac{BL}{BC} \text{ and cycles } \eta, \zeta, \quad (8)$$

is as follows.

$$\xi = \eta = \zeta. \quad (9)$$

Remark 2 Equi-Cevians possess the following analogue of Heron's formula.

$$T(\Delta) = \sigma \|\mathbf{E}\|_F. \quad (10)$$

Where T is the tetra-area. \mathbf{F} is the fundamental triangle matrix [8], previously alias Heron matrix [4]. \mathbf{E} is the vector of equi-Cevian lengths². And

$$\sigma := (1 - \xi + \xi^2)^{-1}. \quad (11)$$

For comparison, in this Linear-Algebraic formulation, Heron's formula takes the form

$$T(\Delta) = \|\mathbf{S}\|_F. \quad (12)$$

Where \mathbf{S} is the vector of side lengths² subcase of the above, corresponding to either $\xi = 0$ or $\xi = 1$. For how this is equivalent to the usually stated square root form, and how in parallel the equi-Cevian case can also be cast in square root form, see [9].

4 The Equi-Cevian Area-Magnification Theorem

Remark 1 The equi-Cevians furthermore close to form their own triangle, E [11].

Remark 2

$$\|\mathbf{E}\|_F \quad (13)$$

can thus also be interpreted as the tetra-area of E .

So

$$\mathfrak{Re} := \frac{A(E)}{A(\Delta)} = \frac{T(E)}{T(\Delta)} = \frac{\|\mathbf{E}\|_F}{\sigma \|\mathbf{E}\|_F} = 1 - \xi + \xi^2 = \frac{1 + \lambda + \lambda^2}{(1 + \lambda)^2} = \left(\frac{\mathfrak{C}_i}{\mathfrak{C}_u} \right)^{2/3}. \quad (14)$$

Thus we have proven the following Theorem

Theorem 1

$$\mathfrak{Re} = \left(\frac{\mathfrak{C}_i}{\mathfrak{C}_u} \right)^{2/3}. \quad (15)$$

Remark 3 \mathfrak{R}_i , \mathfrak{R}_u and \mathfrak{R}_e can also be interpreted as area-magnification factors in passing from the original triangle Δ to the T , \bar{T} and E triangles respectively. By which, for equi-Cevians, Theorem 1 joins Routh's two Theorems in being an area-magnification Theorem.

Remark 4 Our new affine-invariant area ratio is furthermore purely a function of the ratio of the scale-factors that emerge from Routh's Theorems about two other affine-invariant area ratios.

5 The 4-Areas Theorem

Remark 1 We can therefore eliminate this ratio of scale factors so as to relate the four areas occurring in the current Article to the aconcurrency, as follows.

Theorem 2 (4-Areas Theorem) For equi-Cevians,

$$\frac{A(\bar{T}) A(E)^3}{A(T)^2 A(\Delta)^2} = \left(\frac{\mathcal{C} - 1}{\mathcal{C} + 1} \right)^2. \quad (16)$$

Proof

$$\frac{A(E)^3}{A(\Delta)^3} = \frac{\mathfrak{C}i^2}{\mathfrak{C}u^2} = \frac{A(T)^2}{A(\Delta)^2} \frac{1}{(\mathcal{C} + 1)^2} \frac{A(\Delta)}{A(\bar{T})} (\mathcal{C} - 1)^2 = \frac{A(T)^2}{A(\bar{T}) A(\Delta)} \left(\frac{\mathcal{C} - 1}{\mathcal{C} + 1} \right)^2. \quad (17)$$

Finally concentrate all the area terms in the left-hand-side. \square

Naming Remark 1 In Fluid Mechanics parlance, the right-hand-side is the square of the *Atwood number of the [acollinearity] quantity*. In its original setting, this is a density contrast between 2 layers of fluid. In the current context, it is the *contrast between the concurrency and its critical value*. Indeed, *contrast* is a useful notion in the Geometrical theory of ratios. By which *fluid 2-layer density contrast* is a truer name for Atwood number.

Remark 2 Setting

$$\mathcal{D} = \frac{\mathcal{C} - 1}{\mathcal{C} + 1} \Rightarrow \mathcal{C} = \frac{1 + \mathcal{D}}{1 - \mathcal{D}}.$$

Thus

$$\mathcal{C} = \frac{A(T) A(\Delta) + \sqrt{A(\bar{T}) A(E)^3}}{A(T) A(\Delta) - \sqrt{A(\bar{T}) A(E)^3}}. \quad (18)$$

6 Affine-Invariant Corollaries

Remark 1 Since area ratios are affine invariants, we end with the following rearrangements.

Corollary 1 (3-Area-Ratios Theorem)

$$\frac{\mathfrak{R}u \mathfrak{R}e^3}{\mathfrak{R}i^2} = \left(\frac{\mathcal{C} - 1}{\mathcal{C} + 1} \right)^2. \quad (19)$$

Corollary 2 (Affine-Invariant formulation of [Acollinearity])

$$\mathcal{C} = \frac{\mathfrak{R}i + \sqrt{\mathfrak{R}u \mathfrak{R}e^3}}{\mathfrak{R}i - \sqrt{\mathfrak{R}u \mathfrak{R}e^3}}. \quad (20)$$

Acknowledgments I thank S for previous discussions. And C, Malcolm MacCallum, Chris Isham, Don Page, Reza Tavakol, Jeremy Butterfield and Enrique Alvarez for support with my career.

References

- [1] Hazel Perfect, *Topics in Geometry* (Pergamon, London 1963).
- [2] Z.A. Melzak, *Invitation to Geometry* (Wiley, New York 1983).
- [3] H.S.M. Coxeter, *Introduction to Geometry* (Wiley, New York 1989).
- [4] R.H. Buchholz, "Perfect Pyramids", Bull. Austral. Math. Soc. **45** 353 (1992).
- [5] D.C. Kay, *College Geometry* (Harper Collins, New York 1994).
- [6] G.E. Martin, *Transformation Geometry: An Introduction to Symmetry*, (Springer, 1996).
- [7] I.E. Leonard, J.E. Lewis, A.C.F. Liu and G.W. Tokarsky, *Classical Geometry. Euclidean, Transformational, Inversive and Projective* (Wiley, Hoboken N.J. 2014).
- [8] E. Anderson, "The Fundamental Triangle Matrix" (2024), <https://wordpress.com/page/conceptsofshape.space/1306> .
- [9] "Generalizing Heron's Formula by use of Linear Algebra. I. Equi-Cevians and Invertible Cevians", (2024), <https://wordpress.com/page/conceptsofshape.space/1259> .
- [10] "Generalizing Heron's Formula by use of Linear Algebra. II. Use of Möbius, Jacobi and Routh for Concurrent Cevians" , 2024, <https://wordpress.com/page/conceptsofshape.space/1261> .
- [11] Institute for the Theory of STEM, Riddle 7 (2024).
- [12] E. Anderson, *The Structure of Flat Geometry, Widely-Applicable Mathematics. A. Improving understanding of everything by dual-wielding Combinatorics and Linear Algebra.* **3**, forthcoming 2025.
- [13] *Local Lie Theory, Widely-Applicable Mathematics. A. Improving understanding of everything by dual-wielding Combinatorics and Linear Algebra.* **7**, forthcoming 2026.