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Abstract

Equi-Cevians possess a third area ratio on top of the two that are accorded values by Routh’s
Theorems. By which the concurrency alias collinearity object can be written as a function of 4
areas. Or 3 area ratios, with the further benefit that such are affine invariants.
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1 [Transversals|, [collinearity] and their Theorems

Notational Remark 1 Let A, B, C denote the vertices of a triangle A . Thereupon, let [T] denote
the following projective-dual portmanteau. Of a triple of transversals (alias Menelians) 7' and co-

transversals (alias Cevians) T . Let [collinearity] denote the corresponding portmanteau of collinearity
and concurrency.

Remark 1 [T] then possesses the following [collinearity] criteria of Menelaus and of (Hud-)Ceva [1, 3,

7, 5].
Apv =: C = [sign] . (1)
Notational Remark 2 Here sign = —1 and sign = 1. And
BL
A= — . 2
IC (2)

is the co-transversal (Cevian) signed-ratio variable. For L the point at which the co-transversal cuts the
opposite side BC (possibly extended). Also p, v are the cycles of A . Finally C is the [concurrency]
object, alias Hud-Ceva and Menelaus object [10].

2 Routh’s [Acollinearity] Theorems

Notational Remark 1 The naive [acollinearity] is

[da] := C — [sign] . (3)
Where (a is the portmanteau of the acollinearity @i and the aconcurrency @u . Let us also denote
the area of a triangle X by A(X)

Remark 1 Both cyclic triples of [T] form their own triangles. Routh’s [Acollinearity] Theorems [3, 2]
then give expressions for the area ratios

()
[Ra] = AD) (4)
These Theorems can be jointly formulated as [10]
[Ba] = [(a][Ca] . (5)
Notational Remark 3 The geometrical [acollinearity] [®a] is the portmanteau of &i := 9Ri and

Gu = V9u . And the Routhian [acollinearity] scale-factor [€a] is the portmanteau of the following.

= J[ 1+ 0, = J] (14 X1+ p). (6)

cycles cycles

Remark 2 For what the original statements of these Theorems look like, and their conceptual repackaging
into (5), see [10].

Remark 3 The above four Theorems are all part of Affine Geometry [6, 12]. Ratios of areas, such as
[MRa] , enjoy the further property of being affine invariants [13].



3 Equi-Cevians and their Heron’s formula
Remark 1 A triple of co-transversals is equi-Cevian if
A=pu=v. (7)

An equivalent statement in side-fraction variables,

BL
& = BC and cycles n, (, (8)
is as follows.
E=mn=¢. 9)

Remark 2 Equi-Cevians possess the following analogue of Heron’s formula.
T(A) = ol|ElF . (10)

Where T is the tetra-area. F is the fundamental triangle matrix [8], previously alias Heron matrix
[4]. E is the vector of equi-Cevian lengths® . And

o= (1 —¢+ &) . (11)

For comparison, in this Linear-Algebraic formulation, Heron’s formula takes the form
T(A) = [ISllF - (12)
Where S is the vector of side lengths? subcase of the above, corresponding to either ¢ = 0 or
¢& = 1 . For how this is equivalent to the usually stated square root form, and how in parallel the

equi-Cevian case can also be cast in square root form, see [9].

4 The Equi-Cevian Area-Magnification Theorem

Remark 1 The equi-Cevians furthermore close to form their own triangle, E [11].

Remark 2
|E||F (13)

can thus also be interpreted as the tetra-area of FE .
So

.\ 2/3
me = 4T = IO - Mle e LA - (E)

T AL T T(A) T o||E||r (1 + \)2 Cu

Thus we have proven the following Theorem

me—<@>w. (15)

Theorem 1

Cu
Remark 3 Ri, PRu and PRe can also be interpreted as area-magnification factors in passing from the

original triangle A tothe T, T and E triangles respectively. By which, for equi-Cevians, Theorem
1 joins Routh’s two Theorems in being an area-magnification Theorem.

Remark 4 Our new affine-invariant area ratio is furthermore purely a function of the ratio of the scale-
factors that emerge from Routh’s Theorems about two other affine-invariant area ratios.



5 The 4-Areas Theorem

Remark 1 We can therefore eliminate this ratio of scale factors so as to relate the four areas ocurring
in the current Article to the aconcurrency, as follows.

Theorem 2 (4-Areas Theorem) For equi-Cevians,

A(T) A(E) c -1\
AT)ZAL)?E — (c + 1) ' (16)
Proof
AE)? @i AT)? 1 AL A(D)? c -1\’
AR ~ @@~ ADE(C 1P A ' © D = A(T) A(D) <c n 1> (17)

Finally concentrate all the area terms in the left-hand-side. O

Naming Remark 1 In Fluid Mechanics parlance, the right-hand-side is the square of the Atwood number
of the [acollinearity] quantity. In its original setting, this is a density contrast between 2 layers of fluid.
In the current context, it is the contrast between the concurrency and its critical value. Indeed, contrast
is a useful notion in the Geometrical theory of ratios. By which fluid 2-layer density contrast is a truer
name for Atwood number.

Remark 2 Setting

cC —1 1+ D
P=¢371 7= 1-p
Thus
A(T)A(D) + JA(T) A(E)?
C = (18)
A(T)A(L) — JA(T) AE)?

6 Affine-Invariant Corollaries

Remark 1 Since area ratios are affine invariants, we end with the following rearrangements.

Corollary 1 (3-Area-Ratios Theorem)

3 -1 2
Ru ?je _ c (19)
Ri C +1
Corollary 2 (Affine-Invariant formulation of [Acollinearity])
T/ 3
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