

Euler's Quadrilateral Theorem.

I. A brief new Proof that is Physically Guaranteed to Generalize

Edward Anderson*

Abstract

We give a brief new proof of Euler's Quadrilateral Theorem that is Physically guaranteed to generalize Firstly to the 4-body Problem in arbitrary dimension, as provided here in the context of Jacobi H eigenclusters. Secondly to other point-or-particle numbers N and eigencluster trees. Starting with the Jacobi K eigencluster in Article II and its N -path generalization in Article III.

* Dr.E.Anderson.Maths.Physics *at* protonmail.com . Institute for the Theory of STEM.

1 Introduction

1.1 Euler's Quadrilateral Theorem

Theorem 1 [Euler's Quadrilateral Theorem: convex case] Suppose that we are given a convex quadrilateral with sides a, b, c, d and diagonals e, f . Then

$$a^2 + b^2 + c^2 + d^2 = e^2 + f^2 + 4n^2.$$

Where n is the *Euler length* between the midpoints of the two diagonals.

Naming Remark 1 The segment formed by n extends to form the *Newton line* [5, 33] later alias *Newton-Gauss line* [8, 10, 11, 28]. By which *Newton length* is a suitable alias for the above Euler length.

Remark 1 Geometrical [7] – including Parallelogram Law [26] and thus Corollary-of-Pythagoras – are standard. As are trigonometric (cosine rule) [26] and vectorial [24] proofs.

Naming Remark 2 The second of these highlights that the Newton length is an *aparallelogramness* [25], i.e. a measure of departure from a parallelogram. Indeed, for a parallelogram, the midpoints of the two diagonals coincide.

1.2 Two sets of sequentially simplifying variables

Notational Remark 1 We refer to the sides collectively as the a_I , $I = 1$ to 4 4-cycle. To the diagonals as the d_D , $D = 1$ to 2 2-cycle. And to the separations – comprising both of these – as the s_S , $S = 1$ to 6 6-cycle.

Definition 1 The quadrilateral's (*separations*)² variables are

$$A := a^2 \text{ and } 6\text{-cycles}.$$

Among which, we refer to the 4 (*sides*)² as the A_I . And to the 2 (*diagonals*)² as the D_D , Let us finally introduce the (Newton length)²

$$N := n^2.$$

Remark 2 Squared variables have already turned out to be useful in the theory of triangles [39, 42, 44, 36].

Corollary 1 (*separations*)² variables presentation)

$$4N = \sum_I A_I - \sum_D D_D. \tag{1}$$

Definition 2 Whenever there is a sum of equal powers of objects \mathcal{O}_Z , the *pth-power sum variable* is

$$\mathcal{O}_p := \sum_Z \mathcal{O}_Z.$$

Notational Remark 2 This is an inequalities and Functional Analysis notational simplifier. We use $p = 1$ exclusively.

Corollary 2 (sum variables presentation)

$$4N = A_1 - D_1. \quad (2)$$

1.3 Eulerian 4-Body Problem Theorem

Remark 3 While usually stated for convex quadrilaterals, Euler's Theorem in fact holds true in a much wider range of contexts. This includes for arbitrary, rather than convex, quadrilaterals: **Theorem 1*** [Euler 1748] [7]. And indeed for complete quadrilaterals, for which it is not specified which of the 6 separations are to be sides or diagonals. And also for tetrahedrons [24]. It can consequently be taken to be a result about *constellations* [34] of 4 points, whether in 2-d or otherwise.

This means that this result's conceptual class (here meaning arena of validity [38]) has expanded to the 4-body problem [16, 17, 20, 21]. It is furthermore then also compatible with Kendall's Shape Theory [14, 19, 22, 32, 34, 36, 37, 54]. And thus we have arrived at the following truer name.

Theorem 1' [Eulerian 4-body Problem Theorem: cyclic-pair formulation] For opposite-(separations)² pairs (A, C) , (B, D) and (E, F) ,

$$4N = A + C + B + D - E - F \text{ and opposite-pairs 3-cycles.} \quad (3)$$

Remark 4 I.e. the following also hold.

$$4L = B + D + E + F - A - C. \quad (4)$$

$$4M = E + F + A + C - B - D. \quad (5)$$

Introducing 2 further *transversals* [11] L and M that complement the (Newton length)² to form a further opposite-pairs 3-cycle of quantities.

Remark 5 Opposite-(separations)² pairs are indeed well-defined for a quadruple of points in arbitrary dimension. As those pairs of separations which share no vertices. I.e. the 3 pairs of 2-path graphs P_2 supported.

Naming Remark 3 Which a Particle Physicist would call the '*s*, *t* and *u* channels' [18] on which the *Mandelstam variables* are based. The connection being 4-point functions to 4-body problem vertices.

Notational Remark 3 We refer to (3, 4, 5) as the (1), (2) and (3) cycle choices respectively. Collectively denoted by (a) .

Remark 6 Sides-diagonals splits are *not* invariant under 3-cycles. But a different such split can be made for each 3-cycle.

Remark 7 The above cyclic triple of equations can be further condensed using Linear Algebra. Though perhaps less obviously, doing so with a (sides)²-pairs-to-Newton-lengths 3×3 matrix is more useful than with a (sides)²-to-Newton-lengths 6×3 matrix [53].

Theorem 1'' [Eulerian 4-Body Problem Theorem (cyclic Linear Algebra form)]

$$\overline{T} = \underline{E} \cdot \overline{O}. \quad (6)$$

For *tetra-transversal* (length)² vector

$$\mathbf{T} := 4 \begin{pmatrix} N \\ M \\ L \end{pmatrix}. \quad (7)$$

Opposite (sides)² sum vector

$$\mathbf{O} := \begin{pmatrix} A + C \\ B + D \\ E + F \end{pmatrix}. \quad (8)$$

And *Euler matrix*

$$\mathbf{E} := \begin{pmatrix} -1 & 1 & 1 \\ 1 & -1 & 1 \\ 1 & 1 & -1 \end{pmatrix}. \quad (9)$$

Remark 8 We furthermore recognize \mathbf{E} as the ‘fundamental triangle matrix’ \mathbf{F} [42, 46, 47]. That arises not only in Heron’s formula but also from the cycle of cosine rules and even the cycle of triangle inequalities. Thus we have found a *ninth* route to this citizen of Kallista ([42, 47] document the above three and five more).

1.4 Motivation

Remark 9 The level of generality of the Eulerian 4-body Problem Theorem caused us to juxtapose thinking about it and the following.

Theorem 2 [Varignon’s Quadrilateral Theorem, 1731] [6, 13] Given a quadrilateral, the midpoints of its sides form a parallelogram whose area is half that of the original figure.

Motivation 1 For this result also readily extends to other spatial dimensions. In the Varignon case, the reason is clear: there is a Physical proof based on the notion of centre of mass (CoM). Might then Euler’s Quadrilateral Theorem also have a not only convexity-insensitive but also dimension-insensitive Physical proof? It does. Thus providing a first *raison d’être* for the current Note (Sec 3, after a preamble on Jacobi- H coordinates in Sec 2). See the Conclusion for yet further motivation.

2 Jacobi H-coordinates

N	Clus- tering	Partition structure	a) Jacobi vectors	b) Corresponding tree graphs
3	(T)	$(1+1)+1$		© 2024 Dr E. Anderson 3-path P_3
4	K	$((1+1)+1)+1$		4-path P_4
4	H	$(1+1)+(1+1)$		Claw alias 3-star S_3

Figure 1:

Structure 1 Consider the 4-body problem with equal masses. Here, the relative-separation-diagonalizing *relative Jacobi vectors* [9, 16, 20, 29, 34, 37] alias *eigencluster vectors* [45] can be chosen in the following H-shape [see also Fig 1.4.H)].

$$\begin{aligned} \text{post 1} &: \bar{\mathbf{R}}_1 := \bar{\mathbf{q}}^B - \bar{\mathbf{q}}^A \\ \text{post 2} &: \bar{\mathbf{R}}_2 := \bar{\mathbf{q}}^D - \bar{\mathbf{q}}^C \\ \text{crossbar} &: \bar{\mathbf{R}}_3 := \frac{\bar{\mathbf{q}}^C + \bar{\mathbf{q}}^D}{2} - \frac{\bar{\mathbf{q}}^A + \bar{\mathbf{q}}^B}{2} = \frac{1}{2} (\bar{\mathbf{q}}^C + \bar{\mathbf{q}}^D - \bar{\mathbf{q}}^A - \bar{\mathbf{q}}^B) . \end{aligned} \quad (10)$$

With corresponding *Jacobi* alias *cluster-hierarchy masses* (a subcase of reduced masses) as follows.

$$\begin{aligned} \text{post masses} &: \frac{1}{\mu_1} = \frac{1}{\mu_2} = \frac{1}{\mu_3} + \frac{1}{\mu_3} = 2 \Rightarrow \mu_1 = \frac{1}{2} = \mu_2 \\ \text{crossbar mass} &: \frac{1}{\mu_3} = \frac{1}{2} + \frac{1}{2} = 1 \Rightarrow \mu_3 = 1 . \end{aligned} \quad (11)$$

Notational Remark 1 In the present context, Sec 1.3's cycle choices (a) are specifically H-clustering labelling choices (Ha). Though we still use (a) as shorthand for this. The above is then, in further detail, the (H3) = (Hs) cluster, i.e. with the s-channel choice of pairing.

Structure 2 The *mass-weighted (mw) Jacobi coordinates* are then

$$\bar{\mathbf{p}}_i := \sqrt{\mu_i} \bar{\mathbf{R}}_i , \quad i = 1 \text{ to } 3 . \quad (12)$$

Remark 1 We do not require their explicit forms.

Definition 1 The *partial moments of inertia* (MoI) are

$$\iota_i := \rho_i^2 \quad (\text{no sum}) . \quad (13)$$

I.e. the sums of the magnitudes of the previous. The *(total) MoI* ι is the sum of the partial MoI. Finally, the *radius of gyration* (RoG) r is the mass-unweighted counterpart of the MoI. I.e. such that

$$I = mR . \quad (14)$$

For

$$m := \sum_{I=1}^4 m_I \quad (15)$$

the *total mass* of the system ($= 4$ for us if our equal masses are taken to be unit masses). And

$$R := r^2 , \quad (16)$$

so as to have everything in squared variables.

Naming Remark 1 The Newton length alias Euler length, recurs as the *crossbar-length* in the Jacobi-H coordinates. ‘Posts’ and ‘crossbar’ being with reference to a set of Rugby goalposts [30]. This conceptualization is furthermore framework-deformable [41] and democratically valid [20]: for whichever cluster labelling. By which it applies to the whole cycle of 3 opposite-side pairs.

Naming Remark 2 *Transversals* [11] are in various senses a truer name for the role played by Newton lines in the current work. This is ultimately a projective notion, however, and thus has no metric content. So we need to specify something like ‘halving transversals’ *H-transversals* is quite a nice name for these within the specific 4-body problem context. Where H now refers both to the H -shaped eigencluster and to halving. But what if arbitrary-mass H -clusters come into play? Then ‘ H -medians’, where H has reverted to just meaning the eigencluster and ‘medians’ deputizes for halving, may be more prudent...

Remark 2 The 4-body problem’s Jacobi H or K ambiguity is rooted in $N = 4$ vertices being minimum for tree graphs to be nonunique. As per Fig 2.b). Subsequent cluster-shape ambiguities in the N -body Problem remain labelled by [15] $\mathfrak{T}_{\text{tree}}$. I.e. the arena of unlabelled trees on arbitrary vertex number [40]. See [37] for cluster-shape detail up to $N = 6$.

3 Physical proof of Eulerian 4-Body Problem Theorem

3.1 The proof

Proof Our First Principle (A) is the partial MoI expansion of the MoI in Jacobi H-coordinates.

Our Second Principle (B) is the (Lagrange! [45]) democratic RoG formula [45].

Squared variables and sum variables sequentially save us symbols.

Latin \longleftrightarrow Greek ‘translations’ (inter-conversions) must always remember to (un)deploy Jacobi mw factors.

ι_1 , α_1 , Δ_1 and whichever of their Latin counterparts feature are implicitly for the same $(a) = (\text{H}a)$ cluster-labelling choice.

Everything else is in Fig 2.

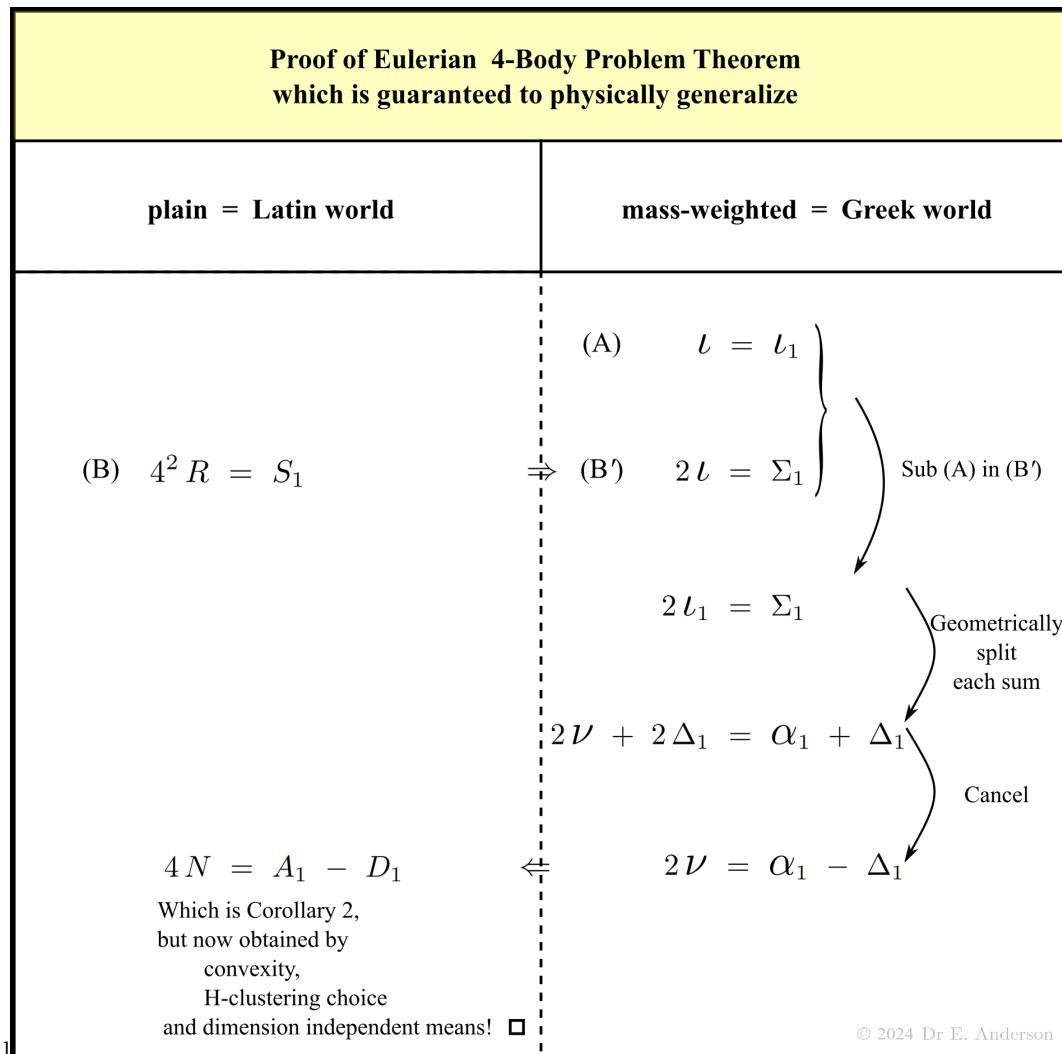


Figure 2:

3.2 Discussion

Question 1 What is the conceptual content of the factor of 4 in the Theorem?

Remark 1 From the mw Jacobi point of view, one factor of 2 is the above-mentioned ratio of Jacobi masses. While the other is from the mw Jacobi version of the RoG Lemma (B).

Remark 2 However, from a sides-data point of view – be it geometrical or Lagrangian – the simplification that the whole 4 then comes from the RoG Lemma occurs. So it is the ratio of the total mass of the system to the mass of each constituent particle. All the while resting on our assumption of equal particle masses.

Remark 3 Finally, returning to the mw Jacobi point of view, the second 2 is thus one half of the ratio of the total mass of the system to the mass of each constituent particle.

Remark 4 The average MoI of a transversal line segment is

$$\langle \nu \rangle = \frac{l}{3}$$

While the average MoI of an inter-particle separation is also

$$\langle \Sigma \rangle = \frac{l}{3}.$$

There are however half as many Newton lines as separations, so each on average contributes 2 times as much. This gives another way of accounting for the second factor of 2 from the mw Jacobi point of view. In which guise it is a ratio of combinatorial counts rather than a ratio built from cluster-democratic Statics.

4 Summary and and outlook

Summary We have provided a new Physical proof for Euler's Quadrilateral Theorem. This uses, firstly, the centre of mass (CoM) family of concepts, including the mass-weighted Jacobi H -coordinates as very familiar from the N -body Problem literature [16, 20, 37]. Whose crossbar length [30] is a third incarnation of the Newton length and the Euler length. Secondly, the moment of inertia (MoI) and radius of gyration family of concepts. But these first and second moments notions manifestly extend to non-convex quadrilaterals, complete quadrilaterals, tetrahaedrons and 4 points on the line [27, 35].

Motivation 2 Our proof is more effective than constructs requiring multiple cases, or the trigonometric proof, which involves 5 uses of the cosine rule. It also includes the 1-d case, which Pythagoras based proofs leave out. It is comparable to the vectorial proof; we give a more detailed comparison between the two in [52].

Motivation 3 and Pointer 1 Both Apollonius's Theorem [1] for median lengths and Euler's Theorem for H -median lengths can be envisaged as Corollaries of [31, 54] Pythagoras' Theorem. And results rooted in CoM-and-MoI considerations [43, 54]. While the latter extend any vertex number, *all cluster shapes and dimensions* (including to 1-d [48], where Pythagoras' Theorem ceases to be contentful). This is the 'fanfare' alluded to in [43]. Whose consequent first few further representative Theorems are for the cases announced in our Abstract in [49, 50]. Some more are in [51, 52].

By this stage, the conceptual class is the N -body Problem. So we have found a *Tree-indexed family of Eulerian N-Body Problem Theorems* [38]. For unlabelled trees on arbitrary numbers of vertices. Among which Apollonius is the P_3 and minimum nontrivial statement. While Euler is the S_3 alias Claw : the minimum non-path tree. [49] gives the P_4 case and [50] the P_n case.

Remark 1 Contrasting with Motivation 1's Varignon's Theorem, there is precisely 1 Varignon Theorem per even- N -body problem. While the odd- N body problems each have precisely 1 Median Concurrency Theorem. Whose smallest nontrivial instance is *the Triangle Medians' Concurrency Theorem*.

Naming Remark 1 [*Transversal*] and the more metrically specific notion of *median* remain useful notions in this greatly enlarged conceptual class. Where $[]$ indicates the *plain-or-dual portmanteau* [40]. Which allows for how e.g. the usual notion of median is a subspecies of Cevian [3, 4, 12, 13, 23, 31], which is a co-transversal. Triangle transversals being, rather, Menelians! [2, 12, 13, 23, 31]. [*Transversal*] is thus our final truer name for today.

Acknowledgments I thank S for previous discussions. A for co-developing a Naming Principle that shall see substantial use elsewhere. K for pointing out two significant typos, which are the main difference between v1 (dated 23-03-2024) and v2. And C, Malcolm MacCallum, Reza Tavakol, Jeremy Butterfield and Enrique Alvarez for support with my career.

References

- [1] Apollonius of Perga (3rd and 2nd Centuries B.C.).
- [2] Menelaus of Alexandria (1st and 2nd Centuries C.E.).
- [3] King Hud of Zaragoza alias al-Mu'taman (11th Century).
- [4] G. Ceva, *De Lineis Rectis (On Straight Lines)* (1678).
- [5] I. Newton evoked the Newton line in proving a Theorem about Quadrilaterals. For an English translation, see e.g. *The Mathematical Papers of Isaac Newton* ed. D. Whiteside (C.U.P., Cambridge 1967–1981).
- [6] P. Varignon, *Elemens de Mathematique de Monsieur Varignon* (Acad Roy. Sci. France 1731).
- [7] L. Euler worked on Geometry, among many other topics, in the 18th Century; this Theorem dates to 1748. Euler's construct for proving this is unrestricted by convexity.
- [8] C.F. Gauss established further properties of the Newton line in the 19th Century, in the context of the complete quadrilateral. By which the term *Newton–Gauss line* is also used. For a popular account, of this work of Gauss see e.g. D. Wells, *The Penguin Dictionary of Curious and Interesting Geometry* (1991).
- [9] C.G.J. Jacobi worked on Mechanics, among many other topics, in the 1840s.
- [10] C.V. Durell, *Modern Geometry: The Straight Line and Circle* (University of California Libraries, 1920).
- [11] R.A. Johnson, *Modern Geometry* alias *Advanced Euclidean Geometry* (Houghton, Boston, 1929; reprinted by Dover, Mineola N.Y. 1960).
- [12] H. Perfect, *Topics in Geometry* (Pergamon, London 1963).
- [13] H.S.M. Coxeter and S.L. Greitzer, *Geometry Revisited* (M.A.A., Washington, D.C. 1967).
- [14] D.G. Kendall, “Shape Manifolds, Procrustean Metrics and Complex Projective Spaces”, *Bull. Lond. Math. Soc.* **16** 81 (1984).
- [15] V. Aquilanti, S. Cavalli and G. Grossi, “Hyperspherical Coordinates for Molecular Dynamics by the Method of Trees and the Mapping of Potential Energy Surfaces for Triatomic Systems”, *J. Chem. Phys.* **85** 1362 (1986).
- [16] C. Marchal, *Celestial Mechanics* (Elsevier, Tokyo 1990).
- [17] F. Diacu, *Singularities of the N-Body Problem* (C.R.M., Montréal 1992).
- [18] M.E. Peskin and D.V. Schroeder, *An Introduction to Quantum Field Theory* (Perseus, Reading, Ma. 1995).
- [19] C.G.S. Small, *The Statistical Theory of Shape* (Springer, New York, 1996).
- [20] R.G. Littlejohn and M. Reinsch, “Gauge Fields in the Separation of Rotations and Internal Motions in the N-Body Problem”, *Rev. Mod. Phys.* **69** 213 (1997).
- [21] K.R. Meyer, *Periodic Solutions of the N-Body Problem* (Springer, 1999).
- [22] D.G. Kendall, D. Barden, T.K. Carne and H. Le, *Shape and Shape Theory* (Wiley, Chichester 1999).
- [23] J.R. Sylvester, *Geometry Ancient and Modern* (Oxford University Press, New York 2001).
- [24] G.A. Kendall, “Euler's Theorem for Generalized Quadrilaterals”, *College Math. J.* **33** 403 (2002).

[25] S.-H. Chou and S. He, "On the Regularity and Uniformness Conditions on Quadrilateral Grids", *Computer Methods App. Math. Eng.* **191** 5149 (2002). They have this notion, but the name 'aparallogramness' itself comes from [38]

[26] W. Dunham, "Quadrilaterally Speaking", in *The Edge of the Universe: Celebrating Ten Years of Math Horizons* ed. D. Haunsperger and S. Kennedy (M.A.A., Washington D.C. 2006)

[27] E. Anderson and A. Franzen, "Quantum Cosmological Metroland Model", *Class. Quant. Grav.* **27** 045009 (2010), arXiv:0909.2436.

[28] C. Alsina and R. B. Nelsen, *Charming Proofs* (M.A.A., Washington D.C. 2010).

[29] E. Anderson, "The Problem of Time and Quantum Cosmology in the Relational Particle Mechanics Arena", arXiv:1111.1472.

[30] E. Anderson, "Relational Quadrilateralland. I. The Classical Theory", *Int. J. Mod. Phys. D* **23** 1450014 (2014), arXiv:1202.4186;
E. Anderson and S.A.R. Kneller, "II. The Quantum Theory", ibid. 1450052 (2014), arXiv:1303.5645.

[31] I.E. Leonard, J.E. Lewis, A.C.F. Liu and G.W. Tokarsky, *Classical Geometry. Euclidean, Transformational Inversive and Projective* (Wiley, Hoboken N.J. 2014).

[32] V. Patrangenaru and L. Ellingson "Nonparametric Statistics on Manifolds and their Applications to Object Data Analysis" (Taylor and Francis, Boca Raton, Florida 2016).

[33] E.A. Weinstein, "Inequalities in Quadrilateral involving Newton Line", *Int. J. Geom.* **5** 54 (2016).

[34] E. Anderson, "The Smallest Shape Spaces. I. Shape Theory Posed, with Example of 3 Points on the Line", arXiv:1711.10054. For the updated version, see <https://wordpress.com/page/conceptsofshape.space/1225> .

[35] "The Smallest Shape Spaces. II. 4 Points on a Line Suffices for a Complex Background-Independent Theory of Inhomogeneity", arXiv:1711.10073. For the updated version, see <https://wordpress.com/page/conceptsofshape.space/1227> .

[36] "The Smallest Shape Spaces. III. Triangles in the Plane and in 3-d", arXiv:1711.10115. For the updated version, see <https://wordpress.com/page/conceptsofshape.space/1229> .

[37] "N-Body Problem: Smallest N's for Qualitative Nontrivialities. I.", arXiv:1807.08391; For the updated version, see <https://wordpress.com/page/conceptsofshape.space/1235> .

[38] Geometrical Discussions between S. Sánchez and E. Anderson in 2018.

[39] E. Anderson, "Two New Perspectives on Heron's Formula", arXiv:1712.01441 For the updated version, see <https://wordpress.com/page/conceptsofshape.space/1244> .

[40] *Applied Combinatorics*, Widely-Applicable Mathematics Series. A. Improving understanding of everything with a pinch of Combinatorics. **0**, (2022). Made freely available in response to the pandemic here: <https://conceptsofshape.space/applied-combinatorics/> .

[41] Combinatorial Naming discussions between A. Ford and E. Anderson in 2022 produced this powerful Naming Principle as their plat fort.

[42] E. Anderson, "The Fundamental Triangle Matrix" (2024), <https://wordpress.com/page/conceptsofshape.space/1306> .

[43] "A New 'Physical' Proof of Apollonius' Theorem" (2024), <https://wordpress.com/page/conceptsofshape.space/1353> .

[44] "Sides-ratio data versus the Triangleland Sphere" (2024), <https://wordpress.com/page/conceptsofshape.space/1364> .

[45] "Lagrange Matrices: 3-Body Problem and General" (2024), <https://wordpress.com/page/conceptsofshape.space/1436> .

[46] "The Fundamental Triangle Matrix Commutes with the Lagrange and Apollonius Matrices. With implications for deriving Kendall and Hopf Theorems." (2024), <https://wordpress.com/page/conceptsofshape.space/1308> .

[47] "Only 2 of the Fundamental Triangle, Lagrange and Apollonius Matrices are Independent. With ensuing Algebras, Irreducibles and Splits" (2024), <https://wordpress.com/page/conceptsofshape.space/1310> .

[48] "Medians in 1 and ≥ 2 dimensions compared" (2024), <https://wordpress.com/page/conceptsofshape.space/1447> .

[49] "Euler's Quadrilateral Theorem. II. The Jacobi-K counterpart." (2024), <https://wordpress.com/page/conceptsofshape.space/1299> .

[50] "III. Generalization to N-Body Problem's Path-Tree Eigenclusters" (2024) <https://wordpress.com/page/conceptsofshape.space/1301> .

- [51] "IV. Generalization to the 5-Body Problem's 3 Eigencluster Shapes. (2024)
<https://wordpress.com/page/conceptsofshape.space/1512> ;
- "V. Generalization to the 5-Body Problem's 3 Eigencluster Shapes. (2024)
<https://wordpress.com/page/conceptsofshape.space/1514> .
- [52] "VI. Generalization to N -Body Problem's Star-Tree Eigenclusters" (2024)
<https://wordpress.com/page/conceptsofshape.space/1516> .
- [53] "Linear Algebra of Quadrilaterals. With particular emphasis on their Area Formulae" (2024),
<https://wordpress.com/page/conceptsofshape.space/1303> .
- [54] *The Structure of Flat Geometry, Widely-Applicable Mathematics. A. Improving understanding of everything by dual-wielding Combinatorics and Linear Algebra.* **3**, forthcoming 2024.