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Abstract
Heron’s formula for the area of a triangle given its sides has a counterpart given its medians
instead, which carries an extra factor of 4

3 .

Firstly, we formulate these two results Linear-Algebraically, showing that they are related by a
sides-to-medians involution J . Which we find to furthermore commute with the ‘Heron map’
H that occurs in the expanded version of Heron’s formula. Upon further casting these two

results in terms of mass-weighted Jacobi coordinates, we find moreover that the factor of 4
3

cancels out, so identical form has been attained. This motivates our ‘Heron–Jacobi’ version of
Heron’s formulae, for mass-weighted area in terms of mass-weighted sides and mass-weighted
medians respectively.

Secondly, we show that diagonalizing the Heron map H provides new derivations of both the
famous Hopf map and Kendall’s Little Theorem that the space of triangles is a sphere. This
occurs by the ‘Heron–Hopf’ version of Heron’s formula simplifying down to none other than
the on-sphere condition! Thus we establish that – both a valuable fibre bundle model, and a
foundational theorem of Shape Theory: a widely-applicable Differential Geometry and Topology
topic – arise together. As consequences of just Heron’s formula and some elementary Linear
Algebra.

This working also accounts for the extra factor of 4 in the Hopf coordinate that is elsewise equal
to the mass-weighted area in the 3-body problem context. It finally offers a new interpretation of
the Shape-Theoretic ellipticity and anisoscelesness which realize the other two Hopf quantities
for triangles. They are eigenvectors shared by the Heron map H and the sides-to-medians
involution J .

Mathematics keywords: Applied Geometry, triangles, spaces of triangles, Shape Geometry, Shape
Statistics, relative Jacobi coordinates, Hopf fibration.

This is v2 of arXiv:1712.01441, which it supercedes because I, as the author of both, assert that it
does. Updates in this v2 are reasonably significant.
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1 Introduction
1.1 Notation

l

Figure 1:

Definition 1 Consider an arbitrary triangle △ ABC , denoted as per Fig 1. Using ai , i = 1
to 3 to denote a , b , c will also turn out to be useful.

Definition 2 The perimeter P is

P := a + b + c =
∑

i

ai . (1)

While the semi-perimeter is

s := P

2 = a + b + c

2 = 1
2
∑

i

ai . (2)

Notational Remark 1 Let us use Area( ABC ) , or Area for short when unambiguous, to denote
the area of △ ABC .

1.2 The usual Heron’s formula
Theorem 1 (Heron’s formula)

Area =
√

s ( s − a ) ( s − b ) ( s − c ) . (3)

This is a classical result, known since the first century A.D. [1, 6]; see e.g. [15, 12, 19, 28] for some
modern-era proofs.

Corollary 1 (Expanded Heron’s formula)

Area = 1
4

√ ∑
cycles

( 2 a2 b2 − c4 ) . (4)

1.3 Outline of the rest of the current paper
In Sec 2, we re-express (4) in Linear Algebra terms, involving what we term the ‘Heron matrix’, H .
In Sec 3, we recollect that side lengths control median lengths and vice versa. This is via a Corollary
[31] of Stewart’s Theorem [4, 11] (another classical result, now from the 18th century). We also
recast this inter-relation in Linear Algebra terms. Showing furthermore that it can be formulated as
an involution J : the sides-medians involution. Perhaps surprisingly, H and J are furthermore
shown to commute. This accounts for why the usual side’s Heron formula and the medians’ Heron
formula ([21, 27], Sec 3) are very similar in appearance. They differ only by a relative factor of 4

3 .
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We introduce 3-particle relative Jacobi coordinates in Secs 4 and 5. These are well-known to be
useful in the N -body problem context [17, 24]. For the equal point masses case currently under con-
sideration, medians and sides are coprimary as inputs to relative Jacobi coordinates. This gives the
first reason – Jacobian motivation – why I am reappraising the theory of medians. Mre specifically,
I am considering Jacobi mass-weighted sides-and-medians to be coprimary.

♠ ⋄ ♣

We show moreover in Sec 6 that the Jacobi mass-weighted side and median forms of Heron’s formulae
– which we term ‘Heron–Jacobi’ formulae – have identical form. Here the factor of 4

3 gets absorbed
and conceptually identified.

In Sec 7, we furthermore consider diagonalizing the Heron matrix H . We observe this to give
none other than a recovery of the famous Hopf map [7] (Appendix A). Which, in the present 2-d
3-body problem context [9, 14, 24, 33, 40, 42] (Appendix B), is also a way of obtaining Kendall’s

Little Theorem [13, 16, 25]. Which in turn states that that the space of all triangular shapes is a
sphere. This is via the ‘Heron–Hopf’ version of Heron’s formula having reduced down to what is
mathematically just the on-sphere condition.

♠ ⋄ ♣

This approach furthermore builds upon the preceding use of Relative Jacobi coordinates. Which are
thus useful in setting up Kendall’s Shape Theory: a new subject of considerable promise [16, 23, 25,
33, 34, 35, 37, 38, 39, 36, 40, 41, 42, 43, 47, 44, 45, 48, 49, 51, 52].

This working also accounts for the extra factor of 4 in the Hopf coordinate that, in the 3-body
problem context, is mass-weighted area up to this factor. It furthermore points to the other 2
Hopf coordinates – interpreted in [30, 33, 42] in the 3-body problem context as ellipticity and
anisoscelesness – being comparably motivated to the much more well-known area variable. This is
from the point of view that these 2 variables feature co-primarily with the area as a set of 3 Cartesian
axes for the shape sphere’s natural ambient R3 . It additionally offers a new interpretation of the
Shape-Theoretic ellipticity and anisoscelesness realizations of Hopf’s other 2 quantities. Namely,
these are 2 of the Heron map H ’s eigenvectors, which, by commutativity, are also shared with the
sides–median involution map J .

We consider Linear Algebra for the Hopf quantities in Sec 8. This permits us to show in Sec 9
that the ellipticity and anisoscelesness quantities are invariant in form under exchange of sides and
medians. Up to signs allowed as part of changing Cartesian axes. This provides our second – now
‘Hopfian’ – motivation for coprimary treatment of sides and medians. Sec 10 finally summarizes what
we term the ‘Heron–Hopf’ and ‘Heron–Kendall–Hopf’ forms of Heron’s formula: the area-subject
and symmetrical presentations respectively. Alongside giving two (almost) equivalent concomitant
formula with ellipticity and anisoscelesness as their subjects respectively.

As complementary reading, see [25, 40, 42, 51] for accounts of Kendall’s Shape Theory in general
and the shape space of triangles in particular, And also [42, 52] for an outline of the Hopf map and
its realization in the Shape Theory of triangles.
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2 The Heron matrix
Lemma 1 The expanded form (4) of Heron’s formula (3) can be recast in Linear Algebra terms as
the following quadratic form in the squares ai

2 , so it is quartic in the ai themselves.

( 4 × Area )2 = Hi j ai
2 aj

2 . (5)

For ‘Heron matrix’ [20]

H := 1
3

-1 1 1
1 -1 1
1 1 -1

 . (6)

Naming Remark 1 A truer name for the formula habitually named after Heron is ‘area from side
data formula for triangles’.

3 The sides–medians involution
Definition 1 The medians of a triangle are as per 2.a)-b). It will also be useful for us to use mi ,
i = 1 to 3 to denote ma , mb and mc .

l

Figure 2:

Remark 1 By treating sides and medians as coprimary, we have more definitions (or at least
accordances of equal significance) than in hitherto standard treatments of triangles. Starting with
the following.

Definition 2 The medimeter M is

M := ma + mb + mc =
∑

i

mi . (7)

Whereas the semi-medimeter is
s := M

2 . (8)

Remark 2 The perimeter and medimeter can furthermore be viewed as first moments of sides and
medians respectively. The second moments counterparts of each of these also enter the current
paper, as follows.
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Definition 3 The second moment of sides is

PII := a2 + b2 + c2 =
∑

i

ai
2 =:

∑
i

Si . (9)

While the second moment of medians is

MII := ma
2 + mb

2 + mc
2 =

∑
i

mi
2 :=

∑
i

Mi . (10)

Si and Mi are components of subsequently useful vectors S and M .

♠ ⋄ ♣

Theorem 2 (Stewart’s Theorem) Let △ ABC be a triangle with L an arbitrary point on side
BC . Then

AL2 = LC

BC
AB2 + BL

BC
AC2 − BL LC . (11)

Proof This follows in two lines from the cosine rule. 2

Naming Remark 1 The segment AL = ca is in general a Cevian [2, 3, 10, 11, 26] (Fig 2.c).
These enter Hud–Ceva’s Theorem, which has Affine-Geometric significance. In Euclidean Geometry,
Cevians have lengths as well, and the function of Stewart’s Theorem is to compute these. A more
functional name for Stewart’s Theorem is thus Cevian length Theorem.

Remark 3 Medians are indeed a simple subcase of Cevians, hence the relevance of Stewart’s The-
orem to the current paper, as follows.

♠ ⋄ ♣

Corollary 2 i) The median lengths’ squares are given by

Ma = ma
2 = 2 b2 + 2 c2 − a2

4 and cycles . (12)

ii) The second moments of medians and of sides are related by

MII = 3
4 PII . (13)

Proof i) This readily follows from Stewart’s Theorem, as per worked problem 1 of [31].

ii) then follows immediately from both parts of Definition 6 upon summing i) over all cycles. 2

Corollary 3 i) In Linear Algebra form, ma
2

mb
2

mc
2

 = 1
4

 -1 2 2
2 -1 2
2 2 -1

  a2

b2

c2

 . (14)

I.e.
M = 1

4 B · S . (15)

Where

B :=

 -1 2 2
2 -1 2
2 2 -1

 . (16)
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Observe that this is a symmetric matrix,
ii) Inverting, we find that

S = 4
9 B · M . (17)

Remark 4 That the same B appears in the inverted expression indicates that B is proportional
to an involution J . I.e. it is a matrix such that

J2 = 1 : the identity matrix . (18)

We can thereby further tidy up Corollary 1’s Linear Algebra formulation by identifying and using
J , as follows.

Corollary 4 i)
M = 3

4 J · S . (19)

ii)
S = 4

3 J · M . (20)

For sides-medians involution

J := 1
3

 -1 2 2
2 -1 2
2 2 -1

 = 1
3 B . (21)

Rescaling of course preserves the symmetric character of the matrix.

♠ ⋄ ♣

Theorem 3 ( Medians’ Heron formula, alias ‘area from median data’ formula for trian-
gles).

Area = 4
3
√

s ( s − ma ) ( s − mb ) ( s − mc ) = 1
3

√ ∑
cycles

( 2 ma
2 mb

2 − mc
4 ) . (22)

Proof While traditional Geometric proofs of this are not uncommon [27], I give instead a striking
Linear Algebra proof. First observe Lemma 1’s Linear Algebra form of the square of Corollary 1’s
expanded Heron formula. Next substitute Corollary 3.ii) in,

( 4 × Area )2 = S · H · S =
(

4
3 J · M

)
· H ·

(
4
3 J · M

)
= 16

9 M · J · H · J · M .

(23)
Making use of the symmetric matrix property in the last step.

Thus evaluating the matrix product,

Area2 = 1
9 M · H · M . (24)

So reversing the expansion of Heron with mi in place of ai , (22) ensues. 2

Remark 5 This proof contains an insight which traditional Geometric proofs miss. Namely, that
the sides–medians involution matrix J and the ‘Heron matrix’ H commute,

[ J , H ] = 0 . (25)

J · H = H · J . (26)
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Observe furthermore that
J · H = K = H · J (27)

for

K := 1
3

 5 -1 -1
-1 5 -1
-1 -1 5

 . (28)

Remark 6 It is because of this that the ‘median-Heron’ matrix G in the a priori conceptual form
of (24),

Area2 = M · G · M , (29)

is just proportional to the ‘Heron matrix’ itself, as follows.

G = 1
9 H . (30)

Remark 7 In summary, the sides-Heron and medians-Heron formulae are as follows.√
s ( s − a ) ( s − b ) ( s − c ) = Area = 4

3
√

s ( s − ma ) ( s − mb ) ( s − mc ) . (31)

4 Jacobi coordinates for the triangle

l

Figure 3:

Structure 1 Let us next consider our triangle’s vertices to be equal-mass particles. With position
vectors q

I
, I = 1 to 3 , relative to an absolute origin 0 and axes A (Fig 3.a).

Definition 1 The inertia quadric for N particles in any dimension is as follows.

I
(

q
I

)
=

N∑
I = 1

mI qI
2 =

N∑
I = 1

qI
2 . (32)

Where the last equality is for equal masses, taken without loss of generality to be of unit size.

Remark 1 Translating the origin by some arbitrary amount a ,

I
(

q
I
, a
)

=
N∑

I = 1
mI

∣∣∣∣∣∣ q
I

− a
∣∣∣∣∣∣2 . (33)

Furthermore, extremizing with respect to a ,

a = 1
M

N∑
I = 1

mI qI =: aCoM . (34)
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Where ‘CoM’ stands for ‘centre of mass’. And where

M :=
N∑

I = 1
mI (35)

is the total mass. I.e. introducing an arbitrary a and extremizing thereover picks out the centre of
mass position.

Then substituting for this back in (33), one obtains the following relative Lagrangian version of the
inertia quadric.

I ( rI J ) = 1
M

∑N
I = 1

∑N
J = 1

I < J
mI mJ rI J

2 . (36)

For relative Lagrange coordinates
rI J := q

J
− q

I
(37)

(see Fig 3.b)). Formulating in terms of these, by virtue of their being differences of position vectors
q

I
, all reference to the absolute origin, 0 , is cancelled out.

Remark 2 For N ≥ 3 , this object has disadvantages stemming from not all the rI J being in-
dependent. Non-diagonality ensues. This can of course be circumvented by diagonalization, which,
in this context, amounts to passing to relative Jacobi coordinates. These are moreover no longer
in general inter-particle separations, being rather the broader concept of inter-particle cluster sep-
arations. As we shall see below for the particular example of N = 3 in 2-d – the triangle –
this generalization involves relative separations between subsystem centres of mass. [This concept
includes inter-particle separations by the identity that particle positions coincide with that 1-particle
subsystem’s centre of mass.]

♠ ⋄ ♣

Remark 3 To proceed for our particular example, we rewrite (36) as the following quadratic form.

I ( rI J ) = LI J qI qJ = q · L · q . (38)

Where L is the ‘relative Lagrange matrix’.

Narrowing down consideration to N = 3 ,

1
3
(

r1 2
2 + r1 3

2 + r2 3
2 ) . (39)

For which we have the specific form

L = 1
3

 1 -1 -1
-1 1 -1
-1 -1 1

 . (40)

Remark 4 The corresponding characteristic equation is as follows.

0 = det ( L − λ 1 ) = ξ3 − 3 ξ − 2 . (41)

Where
ξ := 2 − λ . (42)

The Factor Theorem then gives that ξ = −1 solves, reducing the problem to a quadratic equation.
Consequently,

( ξ − 2 ) ( ξ + 1 )2 = 0 . (43)

So ξ = 2 or − 1 . Thus the eigenspectrum is λ = 0, 3 with multiplicities 1 and 2
respectively.

♠ ⋄ ♣
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Remark 5 Corresponding orthonormal eigenvectors are, respectively,

1√
3

 1
1
1

 ,
1√
2

 0
-1
1

 ,
1√
6

 2
-1
-1

 . (44)

Remark 6 The first of these corresponds to the eigenvalue 0 and is the centre of mass coordinate.
This occurs no matter what N is, and contributes nothing to the diagonalized relative Jacobi form
of the inertia quadric. The inertia quadric can thereby be considered to involve one coordinate
vector less: n = N − 1 coordinate vectors. So we write it as

I
(

R̃
)

= R̃ · Ỹ · R̃ . (45)

Where the R̃ are proportional to the conventional relative Jacobi coordinate vectors. Let us tilde
everything for now so as to reserve the untilded version for the conventionally used proportions
themselves.

Remark 7 For N = 3 ,
Ỹ = diag( 1, 1 ) . (46)

We thus arrive at
I
(

R̃
)

= R̃1
2 + R̃2

2 . (47)

The conventional scaling is

R1 := q3 − q2 , R2 := q1 −
q2 + q3

2 . (48)

Which, as promised, is recognizable as consisting entirely of cluster separation vectors. The first is
a fortiori an interparticle separation vector, whereas the second involves a 2-particle centre of mass
(see Fig 3.c).

If these are used, the diagonal relative Jacobi separation matrix Y furthermore consists of the
reduced masses of the clusters in question. I.e.

Y = diag
(

1
2 ,

2
3

)
. (49)

This is indeed the standard definition of reduced mass. I.e. conceptually

1
µ

= 1
m1

+ 1
m2

. (50)

Which rearranges to the more computationally immediate form

µ = m1 m2

m1 + m2
. (51)

For equal masses, this gives the following, as claimed.

µ1 = 1 × 1
1 + 1 = 1

2 . (52)

And
µ2 = 1 × 2

1 + 2 = 2
3 . (53)

Naming Remark 1 The relative Jacobi separation matrix can thus be allotted a further, now
conceptual, name: reduced mass matrix. This is with reference to the cluster subsystems picked
out in the allocation of the particular Jacobi coordinates at hand. We mark this by replacing the
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Y notation with µ . Which we take to be a capital µ , standing for both ‘mass’ and ‘diagonal’
(paralleling how Λ is probably the most common notation for a diagonal matrix). I.e. the Jacobi
mass matrix.

Remark 8 So we end up with a relative Jacobi inertia quadric of the form

I ( R ) = R · µ · R . (54)

Remark 9 For N = 3 , the sole ambiguity in picking out cluster subsystems in forming Jacobi
coordinates is which 2 points-or-particles to start with. So there are 3 possible clustering choices,
corresponding to the second orthonormal eigenvector above being free to have its zero in whichever
component.1

♠ ⋄ ♣

Notational Remark 1 Let us denote the above choice by R(1) alias R(a) . And the clusters with
r31 and r12 as their first relative Jacobi coordinate by R(2) alias R(b) and R(3) alias R(c)

respectively.

Notational Remark 2 Let us furthermore denote µ1 by µs – side Jacobi mass – and µ2 by
µm : median Jacobi mass. This is possible since the µi are cluster choice independent. And useful

by its replacing the 1 and 2 labels with more conceptually meaningful and memorable labels: s
for side and m for median. We follow suit by calling the triangle model’s first and second relative
Jacobi vectors the side and median vectors. For all that these are cluster-dependent. I.e.

R
(ai)
1 = ai , (55)

R
(ai)
2 = mi . (56)

Notational Remark 3 Paralleling our use of M and S , let us introduce Ca as the vector
with components C

(i) 2
a , for a = 1, 2 . This C can be taken to stand for ‘clustering’.

Corollary 5 i)
C2 = 3

4 J · C1 . (57)

Inverting to ii)
C1 = 4

3 J · C2 . (58)

Proof Substitute (48) into the Linear Algebra form of the sides–medians relation (19). 2

5 Mass-weighted Jacobi coordinates
Remark 1 Our principal interest in the current paper concerns notions deriving from the following.

Structure 1 Mass-weighted relative Jacobi coordinates are given by the following.

ρ
a

:= √
µa Ra . (59)

Where the a-index takes the values 1 and 2 .

Structure 2 Mass-weighted relative Jacobi separations are the magnitudes of the preceding,

ρa := √
µa Ra . (60)

1For N ≥ 4 , there are further ambiguities. Which can be shown to result from N ≥ 4 points supporting
multiple shapes of tree graph (see e.g. [40, 47]). Jacobi coordinates [5] are widely used for instance in Celestial
Mechanics [17] and in Molecular Physics [24].

10



Remark 2 Thus computationally,

ρ
(a)
1 := √

µ1 R
(a)
1 = a√

2
and cycles . (61)

Alongside

ρ
(a)
1 := √

µ1 R
(a)
1 = ma√

2
=

√
2 b2 + 2 c2 − a2

2
√

2
and cycles . (62)

♠ ⋄ ♣

Definition 1 The mass-weighted inertia quadric is

I
(

ρ
a

)
=
∑

a

ρa
2 = ρ1

2 + ρ2
2 , (63)

Where the last equality is for N = 3 . Computationally, this amounts to returning to the previous
section’s tilded formulation. So one motivation for the mass-weighted relative Jacobi coordinates is
that they are what drops out of the Linea Algebra approach. Another ensues from the matrix in
the quadric being the identity, alongside the following interpretation.

Structure 3 Relative space is the space of independent relative separations. This is furthermore
equipped the standard flat metric. This is numerically equal to Ỹ , but merits a new conceptual
notation R̃ , standing for ‘relative-space’. And yet is computationally just the identity matrix, 1 .

Remark 2 The Cartesian equivalence in this (mass-weighted notion of) relative space of these
moreover constitutes the

‘Jacobian’ first motivation for treating medians and sides coprimarily.

Mass-weighted medians and mass-weighted sides are geometrically coprimary in (mass-weighted)
relative space. These moreover drop out of a Linear-Algebraic treatment most directly, in obtaining
Jacobi coordinates by diagonalization. Motivating relative Jacobi coordinates themselves has further
parts to it. For, in addition to being useful in treating the N -body problem, they turn out to be
coordinates in terms of which the shape space’s own natural coordinates are simple [42].

Remark 3 The mass-weighted Jacobi separations are furthermore related to the more widely known
partial moments of inertia Ia as follows.

ρa =
√

Ia i.e. Ia = ρa
2 . (64)

In particular, with clustering labels explicit,

I
(a)
1 = ρ1

2 = µ1 R1
2 = a2

2 and cycles . (65)

And
I

(a)
2 = ρ2

2 = µ2 R2
2 = ma

2

2 and cycles . (66)

♠ ⋄ ♣

Definition 2 More familiarly, summing over disjoint partial moments rather than over clusters, the
total moment of inertia is

I(a) := I
(a)
1 + I

(a)
2 . (67)

Remark 4 So the total object is the sum of all disjoint partial contributions.
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Lemma 2 (Democratic formula for the moment of inertia)2

I = a2 + b2 + c2

3 = 1
3
∑

i

ai
2 = PII

3 . (68)

Proof

I(a) = I
(a)
1 + I

(a)
2 = 1

2 a2 + 2
3 ma

2 = a2

2 + 2
3

2 b2 + 2 c2 − a2

4 = 3 a2 + 2 b2 + 2 c2 − a2

6 ,

(69)
from which the result follows. The first equality is (67). The second uses (65, 66) and the third uses
Corollary 2. Finally, the last two steps are just elementary algebra. 2

Remark 5 By this Lemma’s right-hand-side’s democracy invariance, we are entitled to rewrite (67)
stripped of its left-hand side clustering dependence (a) as follows.

I := I
(a)
1 + I

(a)
2 or cycles . (70)

It is also clear from the I-ρ inter-relation and I
(

ρ
a

)
formula that total moment of inertia is

another name for the inertia quadric. One could argue that I
(

q
I

)
and I (rI J) were a priori

clustering-independent formulations. Whereupon I
(

ρ
a

)
introduced prima facie clustering depen-

dent features. Further inspection, however, confirms the cluster-dependent labels on these to be
spurious since labelling-independence can indeed be maintained in Jacobi coordinates. So I is
inherently cluster-independent.

♠ ⋄ ♣
Notational Remark There is already a notation available for squared quantities in this case:
Ia , a = 1, 2 for vectors with components I

(i) 2
a .

Corollary 6
i)

I2 = J · I1 . (71)
iv) This inverts to

I1 = J · I2 . (72)
Proof i) Substitute (64) and (59) into the Linear Algebra form of the sides–medians relation (19),
as follows.

µ2
−1 I2 = 3

4 J · µ1
−1 I1 ⇒ I2 = 3

4 × 4
3 J · I1 . (73)

ii) Just invert, using the involution property. 2

Remark 5 Observe that the mass-weighting cleans out the awkward numerical factor of 4
3 in eqs.

(57-58), revealing this to be as follows.

4
3 = µm

µs
= ( Jacobi reduced mass of median )

( Jacobi reduced mass of corresponding side ) . (74)

Remark 6 This can also be accorded a democratic, i.e. clustering-independent interpretation as
follows.

4
3 = µm

µs
= geometric mean over all clusters

(
( Jacobi reduced masses of medians )

( Jacobi reduced masses of sides )

)
=

( 3∏
i = 1

µmi

µsi

)1/3

. (75)

2This is a moment of inertia if the 1/3 is accorded units of mass: the reduced mass for the whole system. If this
is not entertained, the formula is, rather, for the radius of gyration squared.
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6 Consequent Heron–Jacobi formulae
Notation 1 Let us introduce the mass-weighted semi-perimeter, σ , and the mass-weighted semi-
medimeter, ς .

Remark 1 Passing to mass-weighted Jacobi versions of Heron’s formula requires furthermore know-
ing how the bounding quantities scale.

Lemma 3 i) Mass-weighted semi-perimeter is a mass-weighting side-vector,3

σ := √
µs s = s√

2
. (76)

ii) Mass-weighted semi-medimeter is a mass-weighting median-vector,

ς := √
µm s =

√
2
3 s . (77)

iii) Area is a mass-weighting side–median bivector,

αrea = √
µs µm Area = Area√

3
. (78)

Proof i)
s :=

∑
i

ai =
∑

i

R
(i)
1 = 1

√
µ1

∑
i

ρ
(i)
1 = σ

√
µs

=
√

2 σ . (79)

ii)

s :=
∑

i

mi =
∑

i

R
(i)
2 = 1

√
µ2

∑
i

ρ
(i)
2 = ς

µm
=
√

3
2 ς . (80)

iii)

Area = 1
2 ( R1 × R2 )3 = 1

2 √
µ1 µ2

(
ρ1 × ρ2

)
3

= αrea
√

µ1 µ2
= αrea√

1
2

2
3

=
√

3αrea . 2

(81)
Theorem 4 (Mass-weighted area’s Heron–Jacobi formulae in terms of each of mass-weighted sides
and mass-weighted medians)√

σ
(

σ − ρ
(a)
1

)(
σ − ρ

(b)
1

)(
σ − ρ

(c)
1

)
= αrea =

√
ς
(

ς − ρ
(a)
2

)(
ς − ρ

(b)
2

)(
ς − ρ

(c)
2

)
.

(82)
Proof See Fig 4. 2

Remark 2 Observe that the sides and medians versions are now identical in form. I.e. without
any constant prefactor difference like the 4

3 in the mass-unweighted medians case (Theorem 1)
relative to the mass-unweighted sides case (Theorem 2). This amounts to explaining the 4

3 factor
discrepancy between the medians’ Heron’s formula and the standard sides’ Heron’s formula. As
resulting from formulating Heron’s formula for area rather than for mass-weighted area.

Pass to Jacobi coordinates. Therein, mass-weighted area is more natural for formulating Heron’s
formulae. Now the mass-weighted sides’ version and the mass-weighted medians’ version share iden-
tical form: without any such numerical factor. The numerical factor’s significance is thus unmasked
to be the same ratio of reduced masses as tidied up the preceding Linear Algebra, as per eq. (74).
This is embodied in the Heron–Jacobi formulae (82). Compare with the less symmetrical, and thus
less transparent mass-unweighted summary equation (31).

3See [44] for further exposition of ‘side-vector’, ‘median-vector’ and ‘side-median bivector’.
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l

Figure 4:

7 Diagonalizing the Heron matrix gives the Hopf Map and
Kendall’s Theorem

♠ ⋄ ♣

Remark 1 Set
0 = det ( H − λ1 ) = ν3 − ν + 2 . (83)

For
ν := − 1 − λ . (84)

Then the Factor Theorem gives that ν = −2 solves, reducing the problem to a quadratic equation.
Consequently,

( ν − 1 )2 ( ν + 2 ) = 0 . (85)

So the eigenvalues are ν = − 2 , i.e. λ = 1 with multiplicity 1 . And ν = 1 , i.e. λ = − 2
with multiplicity 2 .

Remark 2 Corresponding orthonormal eigenvectors are, respectively,

1√
3

 1
1
1

 ,
1√
2

 1
-1
0

 ,
1√
6

 1
1

-2

 . (86)

Structure 1 The diagonalizing variables are thus

a2 = a2 + b2 + c2
√

3
, (87)

b
2 = a2 − b2

√
2

, and (88)

c2 = a2 + b2 − 2 c2
√

2
. (89)

Remark 3 The Heron quadratic form (5) is hence equal to∑
i

Λi i ai
2ai

2 . (90)

For diagonalized Heron matrix
Λi j = diag( 1, −2, −2 ) . (91)
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Which is related to the original Heron matrix H by conjugation with the usual orthogonal trans-
formation matrix P as here formed by using (86) orthonormal eigenvectors as its columns. Thus
we have derived that Heron’s formula also takes the following form.

♠ ⋄ ♣

Theorem 5 (Diagonal Heron formula)

Area = 1
4

√
a4 − 2

(
b2 + c2

)
. (92)

Corollary 8 Next multiply both sides through by 4
ai

2 to obtain the following.

4 × Area

a2 =

√√√√1 −

[
√

2
(

b

a

)2]2

−

[
√

2
(

c

a

)2
]2

. (93)

Remark 4 The 4 × Area scaling present in the Hopf quantity has its 4 come from

Area = 1
4
√

( expanded Heron form ) . (94)

So
( 4 × Area )2 = ( expanded Heron form ) . (95)

♠ ⋄ ♣

Definition 1 It is thus natural to finally define the rescaled ratio variables

Z :=
√

2
(

c

a

)2
= a2 + b2 − 2 c2

a2 + b2 + c2 . (96)

X :=
√

2
(

b

a

)2

=
√

3
(

a2 − b2 )
a2 + b2 + c2 . (97)

And
Y := 4 × Area

a2 . (98)

Remark 5 The denominator of the ratio is proportional to the moment of inertia by Lemma 2. Y
is moreover to be interpreted precisely as mass-weighted area per unit moment of inertia.

Remark 6 In terms of these rescaled ratio variables, Heron’s formula has been reduced to just the
following.

♠ ⋄ ♣

Corollary 9 The rescaled ratio variables version of the diagonal Heron formula is

X2 + Y 2 + Z2 = 1 . (99)

Which is mathematically just the on 2-sphere condition.

Remark 7 We furthermore identify Y = 4 × (mass-weighted area) as a Hopf quantity.

Remark 8 X and Z are also Hopf quantities, which, in the triangle context, can moreover be
interpreted as follows [30, 33, 42]. Without normalizing, one has

Aniso = a2 − b2
√

3
. (100)
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And
Ellip = a2 + b2 − 2 c2

3 . (101)

One can readily check that these and 4 × αrea obey

Aniso2 + Ellip2 + ( 4 × αrea )2 = I2 . (102)

Remark 9 Or, at the level of shape quantities, i.e. with normalization, one has

ellip = a2 + b2 − 2 c2

a2 + b2 + c2 . (103)

And
aniso = a2 − b2

√
3 ( a2 + b2 + c2 )

. (104)

One can also check that these and 4 × area obey the on-sphere condition

aniso2 + ellip2 + ( 4 × αrea )2 = 1 . (105)

For normalized mass-weighted area
αrea := αrea

I
. (106)

Remark 10 Anisoscelesness and ellipticity can moroever now be interpreted as two of the eigen-
vectors of the Heron map H .

Remark 11 Moreover, due to H and J commuting with each other, these maps share their
eigenvectors. Such sharing is well-known in Quantum Mechanics, under the name of ‘complete set
of commuting observables’ (CSCO), and in Methods of Mathematical Physics. Anisoscelesness and
ellipticity are thus also eigenvectors of the sides–medians involution J .

8 Median–sides interchange form invariance of diagonal Heron–
Hopf formula

Corollary 10 In terms of the medians, i)

Ellip = − 4
3

ma
2 + mb

2 − 2 mc
2

3 . (107)

And
Aniso = − 4

3
ma

2 − mb
2

√
3

. (108)

ii) At the level of shape quantities,

ellip = − ma
2 + mb

2 − 2 mc
2

ma
2 + mb

2 + mc
2 . (109)

And
aniso = − ma

2 − mb
2

√
3 ( ma

2 + mb
2 + mc

2 )
. (110)

Proof Use the below Lemma and the sides–medians involution. 2

Lemma 4 (Democratic medians form of total moment of inertia)

I = 4
9
∑

i

mi
2 = 4

9 MII . (111)
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Proof As in the proof of Lemma 2,

I = 1
2 a2 + 2

3 ma
2 . (112)

But now substitute for a2 using the sides-to-medians involution, as follows.

I = 1
2

4
9
(

2 mb
2 + 2 mc

2 − ma
2 ) + 2

3 ma
2 = 4

9
(

ma
2 + mb

2 + mc
2 ) =

4
9
∑

i

mi
2 = 4

9 MII . (113)

As desired, using Definition (10) in the last step. 2

Remark 1 Expressing ellip and aniso in terms of medians instead does not affect the diagonality.
It does flip the signs over. But this is part and parcel of the allowed conventions in setting up a
Cartesian axis system. The Heron–Hopf formula is thus independent of whether one is conceptu-
alizing in terms of sides or of medians. I.e. the Hopf quantities offer a third point of view that is
side–median symmetric. This constitutes the

‘Hopfian’ second motivation for coprimary treatment of medians and sides.

9 Linear Algebra for Hopf Quantities
Structure 1 Let us further formulate anisoscelesness and ellipticity in Linear Algebra terms as
follows.

Aniso = A · S = A · J · M = − A · M . (114)

And
Ellip = E · S = E · J · M = − E · M . (115)

For vectors

A :=

 1
-1
0

 and E :=

 1
1

-2

 . (116)

Structure 2 Introduce furthermore E and A matrices for ellipticity squared and anisoscelesness
squared. Then

Ellip2 = S · E · S . (117)

And
Aniso2 = S · A · S . (118)

Where

E :=

 4 -2 -2
-2 1 1
-2 1 1

 , (119)

And

A :=

 0 0 0
0 1 -1
0 -1 1

 . (120)

We try this for squared quantities so that the vectors being acted upon have sides-squared compo-
nents. And thus match the space that H and J act upon. We then find the following.

Theorem 6 All 3 of the Hopf2 quantities’ matrices commute
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i) with each other:
[ H, E ] = [ H, A ] = [ E, A ] = 0 . (121)

ii) With the sides-median involution J :

[ H, J ] = [ E, J ] = [ A, J ] = 0 . (122)

Proof Use Lemma 5 below. Itself established by mere matrix multiplication and the definitions of
E , A and eq. (28)’s K . 2

Lemma 5
H · A = 2 A = A · H , (123)

H · E = − 2 E = E · H , (124)

A · E = 0 = E · A , (125)

H · J = K = J · H , (126)

J · E = − E = E · J , (127)

J · A = − E = A · J . (128)

Corollary 11 (Matrix form of the Hopf on-sphere condition)

H + A + E = 1
9 I . (129)

Where I is the following degenerate ‘all unit entries matrix’.

I :=

 1 1 1
1 1 1
1 1 1

 . (130)

So that 1
9 I is what occurs in the moment of inertia squared regarded as a quadratic form of

squares.

10 Heron–Hopf–Kendall, Heron–Hopf and two concomitant
formulae

Remark 1 Let us conclude the previous three sections as follows. Sec 7’s workings readily imply
the following Theorems.

Theorem 7 The diagonalized form of the mass-weighted Heron formula is as follows.

4 × αrea =
√

1 − aniso2 − ellip2 . (131)

This ‘Heron–Hopf’ formula is moreover sides–to-medians symmetric.

Theorem 8 The most symmetrical presentation of the diagonalized mass-weighted Heron formula
is as follows.

( 4 × αrea)2 + aniso2 + ellip2 = 1 . (132)

This ‘Heron–Hopf–Kendall’ formula is mathematically just the on-sphere condition. Observe that
this moreover amounts to a recovery of Kendall’s Little Theorem that the shape space of all triangles
in 2-d is a sphere (Appendix B).
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Remark 3 The Heron–Hopf formula, as the area-subject Hopf formula in terms of ellipticity and
anisoscelesness data, now has two concomitant formulae in many senses. These are, firstly, the
ellipticity-subject Hopf formula in terms of anisoscelesness and area data, as follows.

ellip =
√

1 − aniso2 − ( 4 × αrea )2 . (133)

Secondly, the anisoscelesness-subject Hopf formula in terms of ellipticity and area data, as follows.

aniso =
√

1 − ellip2 − ( 4 × αrea )2 . (134)

A sense in which Heron–Hopf has a further quality that these other two formulae do not have is
as follows. It is the only one among these whose subject is democratic i.e. clustering-independent
[24, 42].

11 Conclusion
In the current paper, we considered coprimary treatment of the medians and sides of triangles, as
motivated by Jacobi and Hopf mathematical structure. Both of these are structures entering the
Shape Theory of the space of triangles.

♠ ⋄ ♣

First we reformulated the medians–sides inter-relation in terms of an involution J . We observed
that the following two factors of 4

3 have the same origin.

A) That in the sides–medians involution J .

B) And that in the discrepancy between sides and medians versions of Heron’s formula.

Moreover, in both A) and B), the factor of 4
3 can be removed as follows. By passage to the mass-

weighted Jacobi coordinate version. The mass-weighted sides and mass-weighted medians versions
of Heron’s formula for the now also mass-weighted area are thereby given identical form. We term
these the Heron–Jacobi formulae. In the process, the factor of 4

3 is identified to be the ratio of the
Jacobi mass of the medians to that of the sides.

♠ ⋄ ♣

Secondly, we point to the elsewise well-known Hopf coordinates diagonalizing the Heron map H , a
fact that appears to have hitherto escaped attention. Indeed, in this manner, diagonalizing Heron’s
map H provides us with a new derivation of both of the following.

1) The Hopf map.

2) That the shape space formed by the triangles is a sphere equipped with the standard spherical
metric: Kendall’s Little Theorem.

So at the level of the Hopf formulation of the triangle, Heron’s formula becomes a ‘Heron–Hopf’
formula. Which furthermore coincides with the on-sphere condition that determines that the shape
space of triangles is a sphere.

In its 3-body problem incarnation, the factor of 4 in the Hopf quantity that is the ‘tetra-area’
is moreover accounted for as follows. It is none other than the prefactor of 1/4 in the expanded
version of Heron’s formula.

The other two Hopf quantities are, in their 3-body problem incarnation, ellipticity and anisosce-
lesness. In the current paper, these receive the further enlightening interpretation as eigenvectors of
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the Heron map H . These are furthermore eigenvectors of the sides–medians involution J . Which
follows by the commutation relation between H and J also established in the current paper.

More specifically, our Heron–Hopf formula is obtained by diagonalizing the expanded Heron form,
while keeping mass-weighted area as the subject. As already mentioned above, this takes the math-
ematical form of an on-sphere condition. In the case in which this is represented symmetrically, let
us coin the name Heron–Hopf–Kendall formula for it in honour of Kendall’s iconic shape sphere of
triangles. We finally argued that one can (almost) just as well interpret ellipticity or anisoscelesness
as the subject. Giving two further concomitant forms of the Heron–Hopf formula.

Acknowledgments I thank S, Chris Isham and Don Page for previous discussions. And Malcolm
MacCallum, Reza Tavakol, Jeremy Butterfield and Enrique Alvarez for support with my career.

A The Hopf map

l

Figure 5:

Structure 1 The main Hopf map considered in the current Article is the simplest, as outlined in
Fig 5.

The map that Hopf emphasized [7] is the Hopf spheres map HS Our figure includes also the
map from the ambient R4 for the S3 . To the less obviously realized ambient R3 for the S2 .
Which we term the Hopf Cartesian map HC . The Uk also displayed are unit vector maps to the
corresponding Sk . Finally, the Ck are cone maps from Sk .

Structure 2 The Cartesian directions of R3 moreover make equable use of those of R4 in the
following way. [This is modulo signs and permutations as regards which Hopf quantities are suffixed
X , Y and Z .]

HopfX := 2 x · x′ . (135)

HopfY := 2 ( x × x′ )3 . (136)

And
HopfZ := x2 − x′ 2 . (137)

Structure 3 Normalizing, the unit Cartesian directions in R3 are as follows.

hopfi = Hopfi

x2 + x′ 2 . (138)
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These can be readily checked to obey the on-2-sphere condition,
3∑

i = 1
hopfi

2 = 1 . (139)

Structure 4 The Hopf spheres map can moreover be regarded as a principal fibre bundle. With
base space S2 . Fibre S1 = U(1) , also serving as structure group. And total space S3 .

♠ ⋄ ♣
Remark 1 Applications of this Hopf mathematics include the following.

Application 1) It provides a simple nontrivial example of fibre bundle and of fibration [18, 32, 22].

Application 2) It is theoretically realized in Physical space by the Dirac monopole [8].

Application 3) It is realized in configuration space for the 3-body problem (alongside variants
reviewed in [42, 46]). This realization is moreover Shape-Theoretic and thus is further explained in
Appendix B.

Application 4) It extends to two other special-dimensional cases as supported by the quaternions
and octonians [22].

Application 5) It extends systematically to inter-relate spheres of odd dimension and complex-
projective spaces of one dimension less (see Appendix C).

Application 6) Application 5) is furthermore realized in configuration space for the planar N -body
problem. In what is again a Shape-Theoretic realization as outlined in Appendix D.

B Shape-Theoretic realization of the Hopf map, and Kendall’s
Little Theorem

Theorem 9 (Kendall’s Little Theorem) Take triangles in the Euclidean plane with vertices
distinctly labelled and mirror images held to be distinct. Then the shape space formed by these is
topologically a sphere. It is furthermore equipped with the standard spherical metric (in the sense
of Riemannian Metric Geometry).

Remark 1 This can be proven by each of the following means.

a) By Kendall’s Geometrical construct [13, 16, 25].

b) By reduction of the corresponding Mechanics action [29].

c) From the Hopf map [42].

d) As per the body of the current Article, by reformulating Heron’s formula so as to obtain Hopf’s
realization of the on-sphere condition. This uses basic Euclidean Geometry followed by a very
natural piece of Linear Algebra. And kills two birds with one stone: both Kendall’s Little Theorem
and the usual Hopf map follow from Heron’s formula!

Remark 2 A common rubric for a), b) and c) is outlined in Fig 6.a). Where Tr(d) are translations,
Rot(d) are rotations and Dil are dilations. Specializing down to the case of triangles in Subfig

b). For which
Rot(2) = SO(2) = U(1) .
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Then in approach c), the bottom-left quotienting is Appendix A’s Hopf map HS . HC is also
realized. The previous Appendix’s x and x′ are here realized by the mass-weighted relative
Jacobi vectors ρ1 and ρ2 .

l

Figure 6:

Remark 3 See Fig 7 for a sketch of some features of the shape sphere of triangles and [42] for
further details. See e.g. [40, 42, 46] for whichever combination of vertex-unlabelled, unoriented, and
3-d versions of triangleland.

l

Figure 7:
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C The generalized Hopf map for odd-d spheres

l

Figure 8:

Structure 1 The generalized Hopf sphere (now singular) map HSG from S2 k + 1 to CP
k is

given in context in Fig 8. Our figure includes also the map unit U2 k + 1 from the ambient R2 k + 2

for the S2 k + 1 . And the map Ck forming the cone over CP
k . The generalized Hopf map HGC

now has its C stand for ‘cone’ rather than for ‘Cartesian’.

Remark 1 Observe that Appendix A’s case is included by virtue of the following ‘accidental rela-
tions’.

CP
1 = S

2 . (140)
And

C
(
S

2 ) = R
3 . (141)

Remark 2 In considering this generalization, Appendix A’s Hopf quantities are best viewed as
su(2) objects. Corresponding to the isometry group of S2 being

Isom( Triangleland ) = Isom
(
S

2) = Isom
(
CP

1) = SU(2)
Z2

[ = SO(3) ] . (142)

Afterword Further study [48, 53] reveals that Lie Algebra Representation Theory is key for under-
standing shape quantities. Sec 9’s hopf2 matrices all commuting with each other however encodes
the following instead.

3∏
i = 1

U(1) manifold=
3∏

i = 1
S

1 = T
3 .

Which fails to capture the noncommutativity of su(2) . Because of this, in writing this v2 six years
later, I declare that Sec 9’s matrices are of limited interest.

That H and J commute with each other remains an interesting point. This encodes a symmetry
of mass-weighted sides-medians space. Which does have a

2∏
i = 1

U(1) manifold=
2∏

i = 1
S

1 = T
2

acting thereupon. This is the symmetry underlying that the Jacobi versions of Heron’s formula
and the medians-Heron’s formula are identical in mathematical form. How special mass-weighted
sides-medians space is in having these features is investigated in [50].

Remark 3 Remark 2 furthermore generalizes to [35]

Isom( N -a-gonland ) = Isom
(
CP

N − 2) = SU( N − 1 )
ZN − 1

. (143)

Remark 4 The analogous Hopf quantities are now a set of

( k + 1 )2 − 1 = k ( k + 2 )

objects. Which are built from k + 1 R2--vectors. That span the R2 k + 2 ambient space of the
S2 k + 1 . See [35] for further details of these quantities for k = 2 .
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D Shape-Theoretic realization of the generalized Hopf map,
and generalized Kendall Theorem

l

Figure 9:

Structure 1 The N -a-gonland specialization of Fig 6.a) is given in Fig 9. The k + 1 = n
R2--vectors are now ρ

a
, a = 1 to n .

Theorem 10 (Generalized Kendall Theorem) Take N -a-gons in the Euclidean plane with
vertices distinctly labelled and mirror images held to be distinct. The shape space of of these N -
a-gons is topologically CP

N − 2 . And is furthermore equipped with the standard Fubini–Study
metric in the sense of Riemannian Metric Geometry.

Naming Remark 1 A conceptual name for Kendall’s Little Theorem is ‘Triangleland Sphere The-
orem’. Whereas a conceptual name for the generalized Kendall Theorem is ‘ N -a-gonland CP

N − 2

Theorem’.

Remark 1 The Geometrical [13, 16, 25], Mechanics-reduction [29, 33] and Hopf map [42] proofs
of this carry through. It remains to be seen whether the general N -a-gon case admits an area-
expression reformulation proof along the lines of the current Article. For now, our answer to this is
in the negative [48].

Remark 2 The above k = 2 example’s Hopf quantities are furthermore interpreted as shape
quantities in [35], in the N = 4 case of quadrilaterals.
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