Lie Theory suffices for Local Classical Resolution of Problem of Time.
1. Closure, as implemented by Lie brackets and Lie’s Algorithm, is Central.
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Abstract

The Problem of Time is due to conceptual gaps between General Relativity and the other observationally-
confirmed theories of Physics; it is a major foundational issue in Quantum Gravity. A key point in resolving the
Problem of Time turns out to be that Algebra rapidly takes centre stage. The first algebraic aspect encountered
is that constraints must close, as must spacetime generators. This Closure aspect is assessed by the generalized
Lie Algorithm, of which Dirac’s Algorithm is the constrained canonical perspective’s subcase. Such algorithms,
by having the capacity to shut down trial sets of generators for being inconsistent, constitute a selection principle.
Those sets of generators which survive form Lie algebras or Lie algebroids, such as the Lie algebra of spacetime
diffeomorphisms and the Dirac algebroid of constraints in GR. Around 3/4 of Problem of Time aspects revolve,
moreover, around brackets algebraic structures, with Observables and Constructability joining Closure in this
regard, while Relationalism is distinct.
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1 Introduction

A key point in resolving [70, 77, 78, 81, 82, 83, 84, 87] the Problem of Time [29, 28, 25, 48, 49, 67, 77] is that Algebra
rapidly takes the centre stage away from philosophical considerations. This is through the most philosophically-
rooted [1, 6, 53] aspect of Background Independence — Relationalism [44, 51, 68, 77, 81, 82, 85, 86, 93] — rapidly
fusing with the first algebraic aspect of Background Independence: Closure ([14, 19, 25, 47, 83, 87] and the current
article). This is most readily envisaged by noting that Relationalism is implemented by Lie derivatives, with the
ensuing generators (constraints in the canonical case) then needing to close under Lie brackets (Sec 2) [26] to form
a Lie algebraic structure. In some simpler cases, this is just a Lie algebra (Sec 3) [22, 26, 62], including the Lie
algebra of spacetime diffeomorphisms (Sec 4). In other cases, however, a Lie algebroid [23, 52, 56, 57, 63, 65] ensues
(Sec 6), such as the Dirac algebroid [15, 20, 25, 35, 69] of constraints in GR (Sec 8), or a further qualitatively
distinct algebroid of constraints in Supergravity [40, 75, 77]. All subsequent accounts of the Problem of Time, or of
Background Independent physics, would do well to take this fusion into account.

It should be clear that when there is a single type of Relationalism, in particular in the spacetime version, this
involving a continuous group itself comes with guarantees of Closure. Both Spacetime and Spatial Relationalism’s
diffeomorphisms close in this manner. Similar applies for more structured geometries, for which a Generalized Killing
equation [8, 11, 17, 31] controls the Relationalism; the output of this is a Lie algebra of automorphisms [32]. For
approaches with two Relationalisms acting as generator providers — Configurational and Temporal Relationalism
acting as constraint providers — the situation is less clear-cut. It is here natural to ask whether one has found all of
the constraints. Quite a general approach to this question of Constraint Closure (Sec 10 with examples in Secs 7 and
8) follows from Dirac-type Algorithms [14, 19, 25, 47, 77, 83, 87]. If the answer is in the negative, one has a Constraint
Closure Problem (Sec 10): a Problem of Time facet [48, 49, 70, 77]. In full Lie-Theoretic generality, however, one
is to use a Generalized Lie Algorithm ([90] and Sec 6) of Generator Closure, of which Dirac-type Algorithms are a
subcase. These algorithms have the capacity to shut down inconsistent sets of generators, thus constituting a selection
principle. These algorithms are moreover how closure becomes inextricably fused with Relationalism. Those sets of
generators which survive form Lie algebras or Lie algebroids.

In working with constraints, the combination of working in Hamiltonian variables (Q,P) and making use of the
classical Poisson brackets has the following benefits. It turns out to allow for a systematic treatment of constraints: the
Dirac Algorithm [14, 20, 25, 47, 77, 83, 87]. It also places the classical laws of nature into a framework which transcends
into Quantum Theory [9]. The quantum-level version of closure is Functional Evolution Problem [48, 49]. Closure
is the classical-or-quantum, canonical-or-spacetime, and finite-or-field generalization of the Functional Evolution
Problem iii). ‘Functional’ here implicitly refers to Field Theory, whereas iii) is formulated quantum-mechanically
and at the canonical level, for which the generators take the form of constraints.

In the Lie Background Independence program, Closure literally plays a central role: as Fig [93].1’s central connecting
vertex. By adjacency, this means that many facet interferences are pairwise (Closure, arbitrary). The remaining

parts of the Problem of Time are moreover resolved by further pieces of brackets algebra:

A) observables algebraic structures [74, 88, 94]



B) Cohomological characterization of Lie algebraic structures’ deformations [89, 90, 95].

C) A particular algebraic pentagon relation providing the general question that is answered in the affirmative for
classical GR by its being Refoliation Invariant [90, 95].

2 Lie brackets

Definition 1 For g for now a vector space, Lie bracket is a bilinear map

[, 1 gxg—39 (1)
that is antisymmetric
Ilg, k]l = —I[h, 9]l Vg, h € g (2)
and obeys the Jacobi identity

0 = J(g, hy, k) == |[g,|[hs k]|]] + cycles Vg, h, k € g. (3)

Remark 1 Thus equipped, g becomes a Lie algebra. The useful shorthand J here merits the name Jacobiator. This
is a particular subcase of associator, i.e. measure of departure from associativity. Compare the notion of commutator
as viewed as a measure of departure from commutativity. Aside from the statement that Lie algebras have zero
Jacobiator, nonzero Jacobiator gives a measure of departure from having a Lie algebra.

2.1 Instances of Lie brackets

Case 1 A geometry’s symmetries carry Lie brackets structure. We already encountered various places where such
feature in [93]: for spacetime 9, space X and state spaces & such as configuration space (], phase space Phase and
the space of spacetimes. More specifically, both diffeomorphisms and solutions to the generalized Killing equation
[17, 31] carry such a bracket.

Case 2 Poisson brackets

{.} (4)

are Lie brackets. In their finite canonical realization, Poisson brackets of phase space functions A(Q, P) and B(Q, P)

re given by 0A OB 0B 0A

AB} = —(—  — — — . —. 5
{ } 0Q OP 0Q OP (5)
For Field Theories, Poisson brackets of phase space functions A(Q,P) and B(Q, P) is given by
dA 6B bA 6B
A,B} = > = .= - = .=
{4,B} /Ed {6Q oP oP 5Q} (©6)

In addition to (2, 3), Poisson brackets furthermore obey the Leibniz alias product rule,
{A,BC} = B{A,C} + {A,B}C, (7)

by which they are also a derivation. Brackets which obey these three axioms can be viewed as Poisson algebras, even
if they do not have the specific computational form of Poisson brackets. In this sense, quantum commutators are
Poisson algebras. Indeed, one reason for Poisson brackets’ significance is as a preliminary step toward quantization.
Another is that they enable systematic treatment of constraints; both of these observations are due to Dirac [9, 14].

Remark 1 The fundamental Poisson bracket is

{Q,P} =4. (8)
Q and P are portmanteaux of the finite and field theoretic cases’ configurations and momenta, and § is the portman-
teau of the finite Kronecker § and the product of a field-species-wise such with a field-theoretic Dirac §((z — z’).

This bracket being established for all the Q and P establishes the brackets of all once-differentiable quantities
Z|Q, P| as well. The entries into each slot of the Poisson brackets could also be functionals .#, ¢ rather than just
functions F, G.

Remark 2 If prephase space — the space of configurations and momenta — is equipped with the Poisson bracket, it
becomes phase space, Phase. This can furthermore be rephrased in terms of equipping with a symplectic structure

[41].

Remark 3 The Poisson bracket and phase space are already-TRi [93].



3 Lie algebras

Definition 1 A Lie algebra
g 9)

is a vector space equipped with a Lie bracket, such that the bracket of two elements in the vector space also lies in
the vector space: closure under the Lie algebra.

Remark 1 As more general context, having an algebra amounts to having one more operation than vector spaces.

Definition 2 As a vector space, a basis of elements can be picked therein. Such can be viewed as generators for our
Lie algebra. As [93] already argued, we denote these by

g, indexed by G. (10)

Notation We use italic font for generators represented by finite quantities, such as angular momenta L = ¢ x p.
Upright font for generators represented by field quantities, which we additionally smear (see Sec 4 for the example
of diffeomorphisms). Sans serif font for the portmanteau of the previous two.!

Remark 2 Our Finite-Field portmanteau notation for generators is
g = Z|Q,P| : F(Q,P) (finite) and F(z;Q,P] (field) . (11)
Remark 3 Given a basis of generators g, computing
[sas 0]l = GV aaaan , (12)

permits us to read off the structure constants GY" ¢ for the Lie algebra with respect to this basis. This amounts to
formulating a Lie algebra as Lie brackets of generators which return solely linear combinations of generators (which
thus indeed lie within the original vector space).

A coordinate-independent form for this is [83]

1 _ Ll
lggl =G g (13)
L

G are here structure constant 3-arrays or trilinear maps: a more succinct and coordinate-independent presentation.
It readily follows from (12, 2) that the structure constants obey the antisymmetry property,

oo = -G qq, (14)
and, from the Jacobi identity [4], the homogeneous-quadratic restriction
GG[G/G//GG G"”]G - 0 . (15)

Remark 4 In the canonical setting, the algebras can be taken to be Poisson algebras; see e.g. [52, 73] for introductions
to these. Also, at least within a restricted range of formulations of a restricted range of theories, the generators can
be taken to be constraints.

he q if g closes

—h=
h =Gf, g for qLie 28 2,8,

for g Abelian.

Figure 1: a) An algebra’s commutator. This compares applying two transformations g1, g2 in either order to a common initial object
0. b) The even more straightforward commuting subcase, for which the final objects 12 and 21 coincide as well. Many instances of a)
and b) occur in ALRoPoT, as picked out among the Series’s figures by being depicted on lime-green egg-shaped spaces.

IThis is well-defined at the level of Calculus and Principles of Dynamics for ii) modelled by Banach spaces or a certain subset of
Fréchet spaces; further details are left for a separate global-level review.



Remark 6 For Poisson brackets, and also for differentially-represented Lie algebra generators [93],

L

[}

the right hand side brackets are formed by at most linear algebra operations and differentiation, by which they are
systematically evaluable.

Structure 1 For a particular (1M, o) the generalized Killing vectors moreover close [32] as a Lie algebra,

[£60, £69] = Z - £(x) - (7)

A, B,C are here multi-indexes comprising both the corresponding spatial index a,b, ¢, and G is a generator-basis
index, and Z are the corresponding structure constants. As a Lie algebra, this corresponds to the continuous
connected component of the identity part of the automorphism group,

Aut(M, o) . (18)
We thus denote this by
aut(M, o) . (19)
3.1 Weak equality
Definition 1 Let us use
~ (20)

to mean equality up to a linear function(al) of the generators: Lie- alias generator-weak equality. This is the general
Lie arena’s extension of Dirac’s use of the same symbol to mean equality up to a linear function(al) of constraints:
Dirac- alias constraint-weak equality

Remark 1 In contrast, strong equality
= (21)

is just equality in the usual sense; this clearly does not require any ‘constraint’/‘generator’ or ‘Dirac’/‘Lie’ qualifica-
tions.

Definition 2 Let us finally introduce
[ (22)

to denote portmanteau equality: strong or weak. Having already used this for Dirac- alias constraint-portmanteau
equality in [77, 87], we now extend it to mean Lie- alias generator-portmanteau equality.

Remark 2 Closure as a Lie algebra is then of the schematic form
ltg, gll =" 0. (23)

This is a portmanteau for the strong version
I[g,g]l = 0 : (24)

— a commuting Lie algebra — and the weak version

g, gll =

e}
—~
[\
ot
~

[I[Q

4 Spacetime Generator Closure

For now, we comment that the outcome of infinitestimal generators closing as a Lie algebra

! _ Ll
lg,g'll = g g’ (26)
L

for structure constants G straightforwardly suffices to cover the case of GR’s spacetime diffeomorphisms,

—

{(S E), (S, F)} = (S, [E,T]) . (27)



b)

Figure 2: a) Spacetime diffeomorphisms close as a Lie algebra.
b) Strong spacetime observables close as an Abelian Lie algebra.

c) Weak spacetime observables themselves close as a Lie algebra.

This forms a Lie algebra,

gs = diff(m) (28)
which is infinite in the sense of having an infinite number of generators. E,F here are smearing functions, with
(A, B) denoting [ d*y A(y)B(y) and [, ] denoting differential-geometric commutator. This equation is a subcase of
generator-weakly vanishing Generator Closure.

Example 1 The Poincaré algebra Poin(3,1) = Isom(9M*) has commutation relations [54]
[PM7PV] = 07 (29)
(M, Py = 20,8, (30)
[M,LW’MPU] - 2(np[uMu]U - no[uMl/]o) . (31)

5 Generalized Lie Algorithm

Given a candidate set of generators, one forms the Lie brackets between them. At the local level, five types of
equation can result.
5.1 Outcome a) generators old and new

One possible outcome is zero, in which case the generators commute. A more general possibility is that they give a
linear function of one’s known generators; this was the only possibility considered by Clebsch [5], and returns a Lie
algebra.

It is also possible to get structure functions in place of structure constants:

Ilg,gll = GB.c)-g", (32)
L
| -

but with structure functions G(B, ¢) instead of structure constants, we have a Lie algebroid. The B are base objects,
whereas the ¢ are constants. The possibility of structure functions was first noted by Cartan in 1904 [18]. We shall
see below that a case of it also occurs in Dirac’s work on GR’s constraints. It has subsequently been formalized as
the Lie algebroid [23, 52, 56, 57, 63, 65] generalization of Lie algebra. We furthermore term the portmanteau of Lie
algebras and Lie algebroids a Lie algebraic structure.

Dirac furthermore considered being zero up to a linear function of constraints as a weak notion of zero in the Poisson
brackets setting. We now take this to transcend to a linear function of generators in the general Lie brackets setting.
By this, the current paragraph’s possibilities jointly count as one type of outcome. Lie [7] and subsequently Dirac
[14, 19, 25] furthermore allowed for the possibility that new generators ¢’ are discovered in the process. These are
so-called integrabilities [71] of the candidate set of generators (or of constraints more specifically in Dirac’s case).

Remark 1 Lie brackets are well-known to arise naturally in two ways (at least).

i) Its zeroness ensures that second-order terms vanish for our infinitesimal transformations.



ii) It arises in the integrability condition:
if X and Y solve flow PDE system & , |[X,Y]| also solves & . (33)

In case i), it arises in this second way.

Remark 2 Dirac also formalized how discovering integrabilities in general requires proceeding recursively. So having
found new generators A/,
llg, M]| and |[&, N]| (34)

need to be investigated, and might themselves produce further generators.

5.2 Outcome b) identities

Both Lie and Dirac also envisaged the necessity of including the possibility of brackets producing identities, i.e.
equations reducing to 0 = 0. This is as many outcomes as Lie’s Algorithm included (excluding algebroids).

5.3 Outcome c) inconsistencies

Dirac applied various further insights, albeit only to the narrower arena of Constrained Dynamics’ Poisson brackets
of constraints. The Author subsequently argued [91, 90] for these insights to carry over to the general Lie case, giving
the Generalized Lie Algorithm.

Most significantly, Dirac envisaged the need to include inconsistencies — i.e. equations reducing to 0 = 1 among the
output of the algorithm. This imbues the Algorithm with the capacity to act as a selection principle. This points to
using the language of ‘candidate sets’, which only become theoretically bona fide sets of constraints if they pass the
test set by the algorithm; see Sec 5.6 for details. Dirac’s considerably successful use of ¢) is thus set loose on a much
larger arena of mathematics; see Article 3 for some first consequences. That the Lagrangian

L =4¢+q, (35)

gives as its Euler-Lagrange equations

0=1 (36)
suffices to show that inconsistencies are possible in the Principles of Dynamics. See Article 3 for vindication of
inconsistency as a general Lie, rather than just Dirac, feature.

Definition 1 Lie’s Little Algorithm is generalization of Dirac’s Little Algorithm: the opening run of a smaller
algorithm in his book prior to introducing a rebracketing procedure to factor in the possibility of second-class
constraints. This permits outcomes a), b), c) only.

5.4 Outcome d) specifier equations
In the presence of an appending procedure — which Dirac’s treatment of constraints has — ‘specifier equations’ are

also possible.

E.g. Dirac’s [14, 19, 25, 47] appending of constraints to Hamiltonians [2] H using Lagrange multipliers ¢, to make
total Hamiltonian type objects,
H — Hrotal + ¢ - C. (37)

In the TRi-Dirac counterpart [68, 72, 77, 87], this appending is to the bare differential Hamiltonian dH of constraints
using cyclic differentials dA so as to form total differential-almost-Hamiltonian type objects,

dH — dArem = dH + dX - c. (38)

Specifier equations are then indeed are equations that specify what forms a priori free appending variables can take.

Definition 1 The Extended Lie’s Little Algorithm is for cases that come with an appending procedure: a), b),
¢), d) only.



5.5 Outcome e) rebracketing

A further classification of constraints is as follows [14, 20, 25].
Definition 1 First-class constraints [14, 25, 47] F are those that close among themselves under Poisson brackets.
Definition 2 Second-class constraints [14, 25, 47] are defined by exclusion to be those that are not first-class.

Diagnostic For the purpose of counting degrees of freedom, first-class constraints use up 2 each whereas second-class
constraints use up only 1 [47].

Remark 2 First-class constraints are not necessarily gauge constraints. For now we give the canonical example of
Dirac’s Conjecture [25] failing [47, 87] as a counterexample.

Second-class constraints are to be dealt with by rebracketing: passage from the Poisson bracket to the Dirac bracket
[14, 25],

{4,BY = {AB} — {Az} {z,z}"' {z,B}. (39)

so as to remove irreducible [47] second-class constraints . The —1 here denotes the inverse of the given matrix, and
each - contracts the underlined objects immediately adjacent to it. Geometrically, however, this is still a Poisson
bracket [37] (and TRi-invariant [77, 87]). We do now need to stipulate that first class constraints are to close under
the final Poisson bracket involved. (Second-class constraints having the capacity [47] of arising at each iteration of
the Algorithm, by which a sequence of intermediary brackets may be needed.)

Structure 2 The preceding can moreover happen on subsequent iterations of the TRi-Dirac Algorithm, were these
to reveal more second-class constraints. I.e. while still in the process of investigating a physical theory’s constraints,
one does not yet know which are first-class. This is because a given constraint may close with all the constraints
found so far but not close with some constraint still awaiting discovery. Thus one’s characterization of constraints
needs to be updated step by step until either of the following apply.

The notion of final classical bracket alias mazimal Dirac bracket thus also carries over as already-TRi.
Next consider the corresponding subdivision into first and second-class generators according to whether they weakly

Lie brackets commute, and the subsequent Lie-Dirac bracket
* -1
14, BIS = [AB] - l1A4,z]l -z, 2] - [z, Bl . (40)

to eliminate irreducible [90] Lie second class objects

Remark 1 Second-class generators (or constraints) can be self-second-class, meaning that brackets between some
new objects do not close. Or mutually-second-class, signifying that some bracket between a new object and a
previously found object does not close. Thereby, this previously prescribed or found object can just be viewed as
hitherto first-class. Le. first-classness of a given generator (or constraint) can be lost whenever new generators (or
constraints) are discovered.

Remark 2 a), b), ¢), e) is a final significant combination: including rebracketing while in a context possessing no
appending procedure.

5.6 Termination conditions

Given some initial candidate set of generators g, we assess them under Lie brackets. The Generalized Lie Algorithm
proceeds iteration by iteration until one of the following termination conditions hold [91, 90].

0) Hitting an immediate inconsistency, by at least one inconsistent equation arising [25].
I) Combinatorially critical cascade. Here iterations of the Lie Algorithm produce a cascade of new objects down to
the point of leaving the candidate with no degrees of freedom. This is a combinatorial triviality condition, and was

envisaged by both Lie [7] and Dirac [25].

IT) Cascade to inconsistency. This transcends the point of no degrees of freedom into inconsistency.



IIT) Arriving at an iteration that produces no new objects while retaining some degrees of freedom. This concluding
iteration of the Lie Algorithm produces no new generators, indicating that all such have been found. Re-running the
algorithm past this point cannot find any new equations.

Remark 1 In the canonical case, Dirac-type Algorithms have first-class constraints and specifier equations as objects.
In the general case, this role is played by first class generators alongside specifiers equations (if an appending process
is supported in the given context).

Remark 2 Tt is III) that is the termination condition which renders a candidate theory successful at this stage:
consistent and nontrivial. In this case, the final output is a Lie algebraic structure.

5.7 Comment on synthesis of Relationalism and Closure

The Dirac Algorithm fits our program well, with Temporal and Configurational Relationalism providing candidate
sets of constraints for it to assess. While not itself Temporally Relational, a TRi Dirac-type algorithm is available
[68, 72, 77]. Tts classification of local outcomes is in one-to-one correspondence with a)-e) and so has the same
termination conditions 0)-III). The Generalized Lie Algorithm covers both this and candidate spacetime generators
assessed by the separate spacetime Lie bracket.

A reverse operation to Constraint Provision is the encoding of constraints. l.e. upon finding constraints, one aims
to subsequently build auxiliary variables into the theory’s action. Suppose that a model’s constraints arising from
Relationalism are demonstrated by the Dirac Algorithm to require further constraints in order to close. Then it
may be possible to revisit Relationalism so as to further encode these integrability constraints. So in general the
two-way arrow in Fig 1 is to be interpreted as a loop. This continues until either Relationalism and Closure are
jointly satistied — a 3-aspect synthesis — or the candidate theory is discarded as trivial or inconsistent.

5.8 [Each iteration’s problem is a linear system

Remark 1 If further first-class generators arise, these are fed into the subsequent iteration of the algorithm.

a) Define @ as one’s initial P alongside the subset R of the candidate theory’s formulation’s s that have been
discovered so far, indexed by Q = P [[ R.

b) Form a system
0~ &= {efuc} = {2} +{ag} u ~0. ()

in coordinate-free notation. In the case of completion being attained, (the final R) = s itself, whereas ¢ = F.
(For now under the assumption explained below that all constraints involved are first-class: F.)

Remark 2 (41) is a linear system. Its general solution thus splits according to
u=1p+ C, (42)

for particular solution p and complementary function C. By definition, C solves the corresponding homogeneous
equation
C{¢c,?} =0, (43)

where underbrackets are coordinate-free notation for constraint vector.

Furthermore, C has the structure

C = s-R, (44)

L | I |

L

where the s are the totally arbitrary coefficients of the independent solutions. R is a mixed-index (and thus in
general rectangular rather than square) matrix. Its second index runs over primary constraints while its first index
runs over the generally-distinct independent solutions (hence the subscript S). Our general solution is next to be
substituted into the total Hamiltonian, updating it.

Remark 3 The TRi version counterpart of (41) are also linear problems; see [87] for details.



6 Generator algebraic structures
Structure 1 The end product of a successful candidate theory’s passage through the Generalized Lie Algorithm is a
generators algebraic structure. This consists solely of Lie-first-class generators closing under Lie (or in a sense more

generally Lie-Dirac) brackets. [t could however more generally be a generators-and-specifiers algebraic structure.]

Structure 2 For now, assuming that no tertiary complications explained below occur, schematically,

|7 F]| = 0. (45)
This is a portmanteau for the strong version
|[-7'-7-7'-]| =0, (46)
and the weak version:
loal = & & (47)
[

The F here can be the structure constants of a Lie algebra, or a Lie algebroid’s phase space functions, F(Q, P).

Remark 1 Generator algebraic structures (including constraints algebraic structures) have comparable significance
to base spaces B (such as spaces of spacetimes &, configuration space (] or phase spaces Phase) as regards the study
of the nature of Physical Law. Generator algebraic structures’ detailed features are moreover needed to understand
any given theory. This refers in particular to the topological, differential and higher-level geometric structures of
observables algebraic structures supported [94]; both function space and algebraic levels of structure are relevant to
these. We consequently need to pay attention to the Tensor Calculus on constraint algebraic structures as well. This
justifies our use of one-turn underbrackets to keep generator-tensors distinct from base objects’ zero-turn underlined
ones [93].

Structure 3 The full space of classical first-class generators is®

5. (48)
The space of absence of generators is just id. The space of classical first-class linear generators is

Slin , (49)

the space of classical gauge generators is>

Gauge , (50)

In the canonical case, one can have also the space of Chronos constraints,

Chronos(Phase(S)) . (51)

6.1 Lattices from the generalized Lie Algorithm

Structure 1 The totality of generator subalgebraic structures for a given formalism of a given theory form [76] a

bounded lattice ¢ . (52)

The identity algebraic structure is the bottom alias zero element, and the full algebraic structure of first-class
generators is the top alias unit element. All other elements are middle elements: the Z generator algebraic structures,
denoted by

3 with each type indexed by Z . (53)

See row 2 of Fig 4 for a schematic sketch. Thus & comprises id, 3z and §, arranged to form 2%.

Remark 1 We take lattices - and Order Theory [55] more generally - to be a standard occurrence in the theory of
Lie algebras and Lie groups at least since Serre [26].

2Suppressing less notation, this is F(B(&)) and likewise for subsequent generator algebraic structures listed here.
31In the canonical case, Flin and Gauge need not coincide, by examples given in [47, 87].



6.2 Finite theory simplification

Lemma 1 Temporal Relationalism self-consistency is automatic for finite quadratic theories, in the form of a 1-d
Abelian algebra.

This is since these only have one single-component constraint. But any single component object strongly commutes
with itself. This enforces W = 0, X = 0 in this case.

Example 0 Minisuperspace (spatially homogeneous GR) [30, 33] has a single finite constraint, chronos = Hmini,
so Lemma 1 applies:
{Hminia Hmini} =0. (54)

Remark 1 As we shall see in Section 8, however, Lemma 1 can break down upon passing to Field Theory.

6.3 Example 1) Electromagnetism

Internal G = U(1) gauge symmetry provides the Gauss constraint gauss(z). This is not TRi by itself. Standard
smearing with scalar functions {(z),w(z) will thus do. The resulting constraint algebra is

{(gauss|(),(gauss|w)} = 0. (55)

This of course reflects the underlying gauge group. ( | ) is here the integral-over-flat-space functional inner product.
The final Hamiltonian for Electromagnetism is (using IIp as momentum conjugate to Ag)

Hy = H + Agauss (strictly + A - Ilp) . (56)

6.4 Example 2) Yang—Mills Theory

Internal more general g gauge symmetry provides a more general Gauss constraint gaussy(z). Electromagnetism’s
lack of TRi and standard smearing follow suit, now with internal-vector smearing functions ¢(z),w!(z). The
resulting constraint algebra is

{(gauss; |¢1), (caussy|w’ )} = G s(gaussk |[¢,w]F) . (57)

for structure constants G and internal-index commutator Lie bracket [, |. Once again, this represents the corre-
sponding gauge group. The final Hamiltonian for Yang-Mills Theory is

H, = H + Al gauss; (strictly + M\ - Myr) . (58)

6.5 Example 4) Angular Momenta

If we have angular mementum components J, and J,, then the angular momentum component J, is also implied by
[Jos Jy] = Tz . (59)

This is a well-known instance of discovering a generator as an integrability.

7 Split Lie algebraic structures

7.1 DMotivation

Next suppose that a hypothesis is made about some subset g of the generators being significant; we denote the
remaining independent generators by x. Gilmore [36] is the recommended reference for learning about such splits,
including as regards each of the following applications by which splits of this general kind are already quite widely
known in the literature. Firstly, the 7 could be distinguished by forming a ‘little group’ (alias stabilizer or isotropy
subgroup) [12, 64]. Secondly, the 7 could form a subalgebra corresponding to a Lie algebra contraction [16, 21, 27].
Thirdly, the split could be into qualitatively distinct blocks as per Cartan’s useful decomposition of Lie algebras
[18, 26, 62].

This article’s specific motivation is moreover split space-time’s split Relationalism, as a part of Background Inde-
pendence and the Problem of Time. In particular, this split results in constraint provision itself being split, with
constraints provided by Configurational Relationalism, 7 = shufHle, and constraints provided by Temporal Re-
lationalism, x© = chronos. In this context, Constraint Closure is a mnecessary test for candidate Temporally and
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Configurationally Relational theories to be ratified as actually being consistent. It is additionally only after succeed-
ing with closure that we are entitled to refer to the shuffle as first-class linear constraints, #lin. This is since some
constraints being first-class entails their being known to brackets-close with all other first-class constraints that a
given system possesses. A fair amount of subsequent ‘physical’ or ‘philosophical’ interpretations in the literature
[48, 49, 50, 77] then treats Flin and chronos distinctly, possibly by reference to their linearity and quadraticity in
momenta, or under GR or some other Gravitational Theory’s name for each constraint. Such ideas however only
make sense when detailed analysis of Closure confirms the split to be algebraically meaningful. Some consistent and
mainstream theories algebraically support such interpretations while others do not ([75, 77] and below).

7.2 2-piece split of a given Lie algebraic structure

This takes the form

T+
[

[

vl

Il
[CCe CCCOY [ro-
[8 [

+

g CA

This is taken to extend [77] Gilmore’s split [36] to include Lie algebroids as well as Lie algebras.

7.3 Closure posed in the split-Relationalism context

The split space-time perspective’s split of Relationalism containing two separate constraint providers means that, at
least ab initio, that Closure splits into three checks

1) Configurational Relationalism self-consistency. Whether our candidate constraints shuffle provided by
Configurational Relationalism self-close under classical brackets,

{ shuffle, shuffle } = S - shuffle + T chronos, (63)
L 17 L 1 | M| H

CCC

for structure constants-or-functions S and T.

2) Mutual consistency between Configurational and Temporal Relationalisms. Whether shuffle and
chronos mutually close:
{ shuffle,chronos} = U - shuffle + V chronos . (64)
| M| H | M| L

for structure constants-or-functions U, V.

3) Temporal Relationalism self-consistency. Whether chronos self-closes:
{ chronos,chronos } = W - shuffle + X chronos , (65)
| M [y E— |
for structure constants-or-functions W and X. Our six structure constants-or-functions as ordered above are to be

taken to be split Relationalism’s specific realizations of the general Lie algebraic split’s A, B, C, D, E | F respectively.

7.4 Significant subcases of split Lie algebraic structures

Remark 1 B,C,D,E = 0 are non-interaction conditions, the first and fourth of which render j and & subalgebraic
structures respectively. If the first is accompanied by A = 0, j is an abelian Lie algebra; the same applies to & if
the fourth is accompanied by F = 0.

The following further particular cases are realized in this Series of Articles. Each step down the ladder from I) to
IV) represents a large increase in complexity and generality. One now needs to check, however, the extent to which
the algebraic structure actually complies with splits’ assignation of significance. Such checks place limitations on the

generality of intuitions and concepts which only hold for some simple examples of algebraic structures.

Case i) Direct product [58]. Suppose that B = C = D = E = 0. Then

11



Example 1 Rotations and dilations form a direct product x [68].

Case ii) Semidirect product [58, 24, 45]. If solely C # 0, then
g =jx 8. (67)
Example 2 Translations and rotations form a x [68], e.g. in 3-d

{575} :g'['? (68)

{P,c} =¢ 2. (69)

for € the alternating tensor supported by 3-d space. The first of these means that the £ close as a Lie algebra: a Lie
subalgebra of the full Euclidean Lie algebra. The second signifies that P is a ‘good object’ — in this case a vector —
under the rotations generated by the ..

Example 3 Taking the above P, £ as a single shuffle block, and then adding ¢ as a separate chronos block, unreduced
FEuclidean RPM is x. For Lemma 1 applies, and £ commutes with shuffle as well; the latter can be traced back
to building Euclidean RPM’s action as a good Eucl(d) object. shuffle can thus be accorded the name Flin in this
case. This x can be interpreted as Mechanics on Euclidean space supporting each of Temporal and Configurational
Relationalism independently of the other. This underlies why [68, 77, 93] were able to entertain Temporally and yet
not Spatially Relational Particle Mechanics and vice versa. So

Euclidean RPM realizes the {¢} x Fucl(d) subcase of €hronos x Flin . (70)
The final d-almost-Hamiltonian for unreduced Euclidean RPM is
dA, = dIe + dA - P + dB - ¢ (strictly + dX - PP) . (71)

The reduced formulation of Euclidean RPM also attains closure, now by Lemma 1 applying to the sole remaining
constraint €. In this case,
dA, = dI £. (72)

Relative to our Minisuperspace example, this has the added merit that Configurational Relationalism has been
incorporated. Generalizing what we have learned above gives the following two simplifications within the arena of
split Relationalism.

Simplification 1 Insisting on a group input for Configurational Relationalism guarantees g-subalgebra closure of
the first bracket. This is by forcing B = 0 (closed) and A = const (subalgebra, not subalgebroid).

Simplification 2 Insisting on a good g-object TRi action induces a chronos that is itself a good g-object. This is
by forcing D = 0 and C = const.

Remark 2 The combination of the above two simplifications is so far consistent with our residing within the x case.
For a finite theory with only one chronos, moreover, we know the final bracket is Abelian, confirming closure and
vindicating x status. In this way, our ERPM example above extends to a large class of finite theories.

Remark 3IfT = U = V = W = 0, then Temporal and Configurational Relationalism are totally decoupled
from each other. In fact, the first and last of these suffice, so x, x and the general second bracket also give such
decouplings. This is reflected by Fig 4.c)’s subalgebras.

Case iii) One-way integrability [75, 77] Suppose E # 0. Then & is not a subalgebraic structure. Attempting to
close this leads to some g being discovered to be integrabilities. Let us denote this by

8 S . (73)

Example 4 A simple example of this occurs in splitting SR spacetime’s Lorentz group’s generators up into rotations
J and boosts K, schematically

LI ~ L, [[LK] ~ K, [[EK] ~ K+ .J. (74)

The last bracket is key, since by this the boosts K do not constitute a subalgebra. This is the group-theoretic
underpinning [36] of Thomas precession, referring to the rotation arising in this manner from a combination of
boosts. ‘Thomas integrability’ is thus an alternative name for one-way integrability.
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Remark 2 Yet in this example, linearly recombining the two blocks reveals a simpler split form, in accord with the
well-known accidental relation [36]

s0(3,1) = s0(3) x so(3) . (75)
This does however amount to abandoning one’s originally declared partition of generators. This does not matter
much in the current example’s SR spacetime context.

Example 5 We shall see in the next section, moreover, that GR’s constraints realize © as well, and now without
anything in Remark 1 applying.

Case iv) Two-way integrability [75, 77]. Suppose B, E # 0. Then neither j nor & are subalgebraic structures. This
is due to their imposing integrabilities on each other. Let us denote this by
j & 8. (76)

In this case, attempting to attribute a solo role to j is almost certainly dashed by detailed consideration of the under-
lying algebraic structure. By this stage, the tentative split into 2 blocks has ceased to be algebraically meaningful.
Indeed, « is not ‘a more complicated structure’ but a red herring. It is Algebra’s way of telling us we had no right
to assume that particular block decomposition in the first place.

Example 6 We shall see in the next Section hat attempting a Temporal to Configurational Relationalism split in
Supergravity is struck by such a rebuttal.

8 GR’s Constraint Closure
8.1 Full vacuum GR

At the classical level, GR’s Constraint Closure Problem is solved by its constraints closing in the form of the Dirac
algebroid [15, 20, 25, 35]

Dirac(X) . (77)
The TRi-smeared* [72, 77] and furthermore coordinate-independent [87] form for this is
{(Mm|0L),(m|OM)} = (M| L£oL0M) = (Mm]|[OL,OM]]), (78)
{(#[0K), (M|0L)} = (£LoLn[OK), (79)
{(]03),(1]0K)} = (ac-07" - |03'TOK) . (80)
(] ) is here the integral-over-curved-space functional inner product, [, | the differential-geometric commutator Lie

bracket, and L and OM, dJ and 0K are TRi-smearing functions. Thus GR’s shuffle — the momentum constraint —
is confirmed to be Flin. Finally, GR’s total differential-almost-Hamiltonian is

dAr = dIH + OF - m (strictly + OA - BB). (81)

Main Result The above 4 equations in TRi form amount to joint incorporation of (Temporal Relationalism, Con-
figurational Relationalism, Constaint Closure) aspects of Background Independence in the case of GR. This gives a
conceptual and formal resolution of the local classical Problem of Time’s versions of Frozen Formalism, Thin Sand-
wich, Functional Evolution facets, including all interferences between these. It is not complete as a technical solution
without solving each patch of each spatial topological manifold’s Thin Sandwich Problem explicitly (for which we
have local existence and uniqueness theorems but not general solution in closed analytic form).

Remark 1 Of course, we also need to provide interpretation for what these equations mean. This best proceeds via
noting that, aside from the TRi form enabling our main achievement, using TRi form does not change the nature
of other previous commentary in the literature as regards the Dirac algebroid formed by GR’s constraints (pace one
exception detailed below). In other words, we can largely rely on standing on the shoulders of giants in procuring
the below commentary.

Remark 2 The first bracket closes as a subalgebra [35, 38] by Simplification 1; it is moreover dif f(X): an infinite-d
Lie algebra in the sense of having an infinity of generators. The second bracket signifies that # is a good Dif f(X)-
object — in this case a scalar density [38] — by virtue of Simplification 2. While both of the above are kinematical,
(80) is dynamical. This is so much more complicated in both form and meaning [35] that every other Remark below
is dedicated to it. The geometrical significance of each bracket is depicted in Fig 3 [35, 38, 72, 77].

4Smearing’s ‘multiplication by a test function’ serves to render rigourous a wider range of ‘distributional’ manipulations [43], provided
that these occur under an integral sign.
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Pictorial form of the Dirac algebroid

is computationally only

is computationally only . diff hi
a Z-diffeomorphism

a Lie drag of

<2' hﬁn>

Y -diffeomorphisms
orm a Lie algebra 9

<E' hﬁn>
aJ o]

. <2' hin>
resolves GR's classical
Foliation Dependence Problem
{(m]|0L), (m]|OM)} = (m]][OL,0M]]) {(#]0K), (Mm|0L)} = (Lo |0K) | {(#]03),(#|0K)} = (m- b~ |9] 8 IK)
Algebraic form of the Dirac algebroid

<E' hin>

Figure 3: TRi-dressed Dirac algebroid of GR constraints’ a) geometrical significance and b) algebraic structure.

8.2 GR’s third bracket

Remark 1 Moncrief and Teitelboim [34] pointed out that this means that m is an integrability of #. Suppose
furthermore that Dif f(3)-Relationalism were not initially entertained [59, 60]. Then Dirac’s Algorithm would
enforce it anyway [72, 77, 89, 95|, via this © and then an example of Sec 5.7’s encoding. Thereby, neither GR’s
#, nor its underlying Temporal Relationalism, can be entertained without m or its underlying Configurational
Relationalism; see Fig 4.c) for the subalgebraic structures supported. This indicates a greater amount of interaction
between Temporal and Configurational Relationalism in GR than the RPM model exhibited, the two Relationalisms

being realizable piecemeal there.

Remark 2) (GR-Thomas analogy) [75, 77].
GR manifests the {#} & {m} subcase of €hronos & Gauge . (82)

There is thus a parallel between the following.
a) Composing two boosts producing a rotation: Thomas precession.

b) Composing two time evolutions producing a spatial diffeomorphism: Moncrief-Teitelboim on-slice Lie dragging
[34].

Remark 3 One limitation on this analogy is that the GR case’s integrability cannot be undone by linearly combining
constraints. This is counterbalanced by the Temporal-to-Configurational Relationalism split playing a meaningful
role in GR. All in all, GR’s Dirac algebroid is a mathematically stronger realization of < than the Thomas split of
the Lorentz group.

Remark 4 (80)’s right-hand-side contains structure functions h™*(h(z)). So it is this bracket by which GR’s
constraint closure indeed forms an algebroid. In the Theoretical Physics literature, Bojowald raised awareness of this
subtlety [69].° This gives a second limitation on the Thomas precession analogy: GR’s version is a Lie algebroid
effect whereas Thomas’ is merely a Lie algebra effect.

Remark 5 Consequently, the transformation in question itself depends on the object acted upon, in contrast with
the familiar case of the rotations. Teitelboim [35] poetically phrased as being able to speak of rotations without
saying whether it is a black cube, or a yellow cat that is being acted upon by the rotation, whereas the Dirac algebroid
does act differently on each such object.

Remark 6 By not forming a Lie algebra, the constraints — and Di f f(IN, Fol) — clearly form a structure other than
Dif f(M). Indeed, Dirac algebroids are vastly larger than such diffeomorphism algebras, with the difference in size
reflecting [61] the variety of possible foliations [71] within an evolving spacetime.

Remark 7 The Dirac algebroid already features in Minkowski spacetime M™ in general coordinates. I.e. when this
is split up with respect to an arbitrary spatial surface rather than a necessarily flat spatial surface. This is so as to

5This structure had previously been referred to as ‘Dirac algebra’, though ‘Dirac algebroid’ is not only more mathematically correct
but also not open to confusion with fermionic theory’s Dirac algebra.
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model fleets of observers [66] undergoing acceleration therein. This is in fact the context in which Dirac first found
this algebroid [15], though he subsequently also considered the GR case in [20].

Remark 8 The Dirac algebroid admits a deformation algebroid interpretation [38], with the Hamiltonian constraint
playing the role of a pure deformation therein. The above-mentioned exception to being able to uplift to TRi is
that the TRi version does not necessarily admit a primary level hypersurface deformation interpretation, by now
not necessarily presupposing spacetime [72, 77]. This is also a bonus, since it enables [72, 77, 89, 95] instead for
Spacetime Reconstruction from Space to be posed!

Remark 9 The GR-Thomas analogy’s first limitation can now be taken to rest on GR splits (or SR splits with
respect to arbitrary spatial surfaces) having theoretical significance in excess of that of splitting SR with respect to
flat spatial surfaces. This is down to spatial deformations being much more general than boosts (local versus global,
and generic versus in possession of many Killing vectors). Variety of deformations furthermore encodes variety of
possible foliations. This requiring a Lie algebroid to encode accounts for the GR-Thomas analogy’s second limitation.
The two limitations are thus bridged by fundamental mathematical differences between deformations and boosts: a
point new to the current article.

Remark 10 In minisuperspace, the Dirac algebroid collapses to just one equation due to the spatial covariant
derivative D now annihilating everything by homogeneity. This includes there not being a momentum constraint in
the first place. Whichever of this derivative condition and Lemma 1 also ensures that the surviving third bracket
has collapsed from a Lie algebroid to a 1-d abelian Lie algebra. Only full and trivial subalgebras of constraints are
supported in this case (Fig 4.b).

Remark 11 Strong Gravity [39] demonstrates [60] a smaller a collapse in which both the integrability and the
algebroid nature are lost; this is covered in Article 3.

Remark 12 For ¥ = S! the Dirac algebroid collapses to a Lie algebra (albeit infinite-d)that is well known: the
Witt algebra, or, with central extension, the Virasoro algebra [46].

a) top: full algebra [P) GR example c) GRexample d) Euclidean RPM example
ki of first-class y i
Fin i M -Flin
constraints s M X
g algebra £.P.L =Flin
2 H
2
=2 middle of
9.. bounded
2 : PL
g z .
&
2
]
=]
]

: ; : M
: lamceﬂ(g .
id
ottom:
id/ trivial algebra !

d

(no constraints)

Figure 4: Lattices of notions of constraints (row 2) and of constraint subalgebraic structures (row 1).
a) in general, schematically.

b) For minisuperspace GR.

¢) for full GR: a first arena with a nontrivial middle.

d) for Euclidean RPM: a first arena with a nontrivial-poset middle rather than just a chain.

8.3 Inclusion of matter

Remark 1 Upon including minimally-coupled matter (including no curvature couplings), one has the Teitelboim
split [42] for minimally-coupled matter
no=n 4+ u,

M= M+ MY

There is no difficulty with extending this approach to Einstein—-Maxwell or Einstein—Yang—Mills theories (the Flin
block is enlarged by whatever Gauss constraints are present). See [42] for a traditional account, or [77, 86] for the
TRi version. This immediately extends to scalar Gauge Theories as well. For fermionic gauge theories, one needs to
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work with beins (or similar), by which frame constraints enter at the secondary level. This does not however change
the integrability structure or algebroid nature of the subsequent algebraic structure.

Remark 2 In contrast, in Supergravity — a much more subtle and not minimally-coupled theory of gravitation with
matter — the constraint algebraic structure exhibits ‘two-way integraility’. This amounts to Temporal and Configu-
rational Relationalisms being fused enough here that a split cannot be made along these exact lines. The constraints
can moreover be meaningfully split into three blocks: the supersymmetric constraints, the non-susupersymmetric
linear constraints, and chronos. [77, 95] even argue that Temporal Relationalism is redundant in Supergravity for

reasons already known to Teitelboim [40].

9 Including the possibility of discoveries

We next attempt to maintain one set of generators’ 7 Brackets Closure in the presence of a further disjoint set xc, while
now making allowance for new generators to be discovered. We do this to cover the case of loose transformations,
or, more specifically, of deforming known groups while not yet knowing whether any further groups will ensue from
these deformations ([72, 79, 89, 95] contain examples).

lgogh = A+ B+ g™+ L5 (85)
L L | - (W)
L L | - [N

g, =G+ s+ dag™+ K5 (86)
L L L L
L | - (] | -

g5l = &g+ E85+ L g™+ M 5™ (87)
L L -] | —
L L [ -] | N—

Remark 1 Within the more general ansatz above, we return to the case with no discoveries has

H=1=J=K=L=M=20. (88)
Case i') The direct product case now has
B=C=D=FE=1=J=K-=L=0. (89)

Case ii’) The orientation of semidirect product which respects the 7’s self-closure generalizes (89) further allowing
for D # 0.

Remark 2 B or I # 0 means that the class of j-objects does not close as a subalgebraic structure.
Remark 3 C' # 0 signifies that our algebraic structure was chosen too small for j to represent it.

Remark 4 If we require that the 7 represent the purported g prior to bringing in the x, however, all of the above
are moot.

Remark 5 If K # 0, this may indicate that the 7 are incompatible with the x’s g-invariance. This is to be
resolved by the same methods as in Case iii) but now treating the s and x together.

Remark 6 J or L # 0 indicate that adjoining the x to the 7 forces g to be extended.

Example 1) Correcting one’s action with respect to just the combination of translations P and special conformal
transformations K fails [77]. This is because the ensuing secondary constraints P, & do not form a group without
both scaling p and rotations £. I.e. schematically,

This additionally serves as an example of mutual integrabilities.

Remark 7 The type of block structure the generator algebraic structure has is the main determiner of how a theory
implenents Relationalism. Of which Closures are possible, and, as we shall see in subsequent articles, which notions
of observables and which Constructabilities a theory possesses. This suggests that it is formulations or theories
with qualitatively distinct block structure that constitute interesting variety between how theories can implement
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Background Independence. This is one part of the Comparative Theory of Background Independence; see [92] for
others.

Remark 8 Tertiary constraints can appear at any stage. So can further second-class constraints [87] and specifier
equations [89]. Henneaux and Teitelboim emphasize and largely illustrate [47] how all combinations of first and
second class, and primary and secondary, constraints are possible in whichever steps of the Dirac Algorithm. This
is not however a relationally rooted account; it would be interesting to see if restriction to rr can reproduce this
diversity.

10 Closure Problems

10.1 More specific Closure Problems

Generator-and-Specifier Closure Problem This allows for specifier equations as well as generators arising from
the Lie Algorithm. In this way, the generators category of our ab initio Closure Problem is itself incomplete.

Generator Closure Problem by Sufficient-Cascade Inconsistency This arises if a sufficient cascade leaves us
with no degrees of freedom, or inconsistency. This is a ‘death by 1000 cuts’ type phenomenon, though the role of the
1000 is played, more precisely, by the number of iterations in the Dirac Algorithm. As such, ‘sufficient cascade’ is a
truer name, and we subsequently use Constraint Closure Problem by Sufficient-Cascade Inconsistency.

Enforced Group Extension Problem The initially considered g may require extending due to further Flin arising
as tertiary constraints.

Rebracketing Problem Second-class generators arising as tertiary generators require reassessing all other genera-
tors using a redefined Lie-Dirac bracket.

10.2 Strategies
Strategic Element 1) Abandon one’s candidate theory.

Strategic Element 2) Avoid specifiers, sufficient cascades, algebroids, integrabilities, or even any tertiaries at all
when required, in those case that all such are accompanied by factors that can strongly vanish. This means fixing
the constants ¢ can be fixed so that that no new N feature. This is termed strong avoidance of integrabilities.

Strategic Element 3 Avoidance by removing or adding terms to one’s action principle gives another
alternative; adding can work by cancelling contributions. This works provided that, firstly, we are left with some
terms in the action principle. Secondly, that this does not run contrary to any ‘commensurate or higher’ principles
we require.

Remark 1) One consequence of adopting strategies permitting extension or reduction of ] or Phase is as follows.
Formulations with second-class constraints are ultimately seen as half-way houses to further formulations which are
free thereof. This is largely the context in which both the effective formulation and the Dirac bracket formulation
were developed. Phase is extended in the former and reduced in the latter.

Remark 2 With reference to the preceding subsection’s classification of Closure Problems, on the one hand whichever
of cascades, specifiers, and algebraic interference can be addressed by any of these strategies.

On the other hand, Enforced Group Extension and Enforced Group Reduction require one of strategies 3) or 5-7).
Remark 3 Going full circle, we remind the reader that ‘cascade’ includes each of relational triviality, triviality, or
inconsistency as worst-scenario bounding subcases. The last two of these, we called jointly a ‘sufficient cascade’, so

let us use ‘relationally sufficient cascade’ for the three cases together.

One idea is then that a set of whichever of the preceding may imply further such under Lie brackets, or may, rather
(and perhaps eventually) close.

Structure 1 Strongly vanishing brackets are clearly universal. There is moreover some motivation to extend Dirac’s
notion of weakly vanishing from Poisson or Dirac brackets of constraints
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If a severe form of the Constraint Closure Problem strikes, one may have to entirely abandon the candidate theory’s
triple (B, g, S). Le. the Machian variables [93], a group acting thereupon and the Jacobi-Synge [4, 10, 13] geometrical
action.® In some cases, however, modifying one or more of these may suffice to attain consistency. This gives the
cubic lattice of strategies of Fig 5.

. g |Possessing a first principle
Probing by group generators: or mathematically meaningful
9 | the approach that th;ls series form for & , and then probing
opens up wit 9B [for which B and @realize it.
pr?be outcome \ /
with N\ /
Pure extension or restriction X g | Relational Approach .
none No new B of Brofit § : using families of actions 1 é\}‘l]ahd method !
discoveries Principles of Dynamics in Article 3. —1a b ; aqtht ¢ mo.zt‘ general - |
and Gauge Theory S |Includes strong fixings Ut with no guiding principle
Adding action terms 9B [Gauge Theory: kill terms in S
S in Gauge Theory. incompatible with @ ,
Includes strong fixings. pr keep them by extending 5
S [Includes strong fixings

Figure 5: Seven strategies with some capacity for generating new theories from what is allowed by Generator Closure.

Remark 4 Fig 5’s strategic diversity continues to apply if Phase and an integrated (d-A-)Hamiltonian — or its
constituent set of constraints in whole-universe theories — are considered in place of J and S. Similar considerations
apply in 1) the spacetime formulations of S with gg acting thereupon. 2) At the quantum level (further extending
the Hamiltonian presentation).

Remark 5 Preserving a particular g in Particle Physics includes insisting on a particular internal gauge group, or
on the Poincaré group of SR spacetime.

10.3 Further ties back to Relationalism

Using TRi circumvents some facet interferences. The split Constraint Provider input has, on the one hand, Temporal
Relationalism provides a constraint chronos that is quadratic and so is also denoted by ouad. On the other hand,
Configurational Relationalism provides candidate shuffle constraints that are linear and so are also denoted by cin.
One is then to use the Dirac Algorithm on this combined incipient set of constraints, so as to see whether Constraint
Closure is met or the Constraint Closure Problem arises. This split induces a further split consideration of Constraint
Closure. I.e. whether each of chronos and shuffle are self first-class, and whether they are mutually first-class. The
self and mutual behaviour of shuffle determines whether Configurational Relationalism has succeeded. Supporting
Principles of Dynamics for TRi Constraint Closure is provided in [87]’s Appendix.

11 Conclusion

We give a Lie algorithm upgrade in generality of the Dirac Algorithm for Constraint Closure, now including also in
particular assessment of Spacetime Closure as well.

When successful starting from spacetime’s or dynamics’ relational input, two Lie aspects of Background Independence
are jointly implemented. This amounts to two Problem of Time facets being resolved in the spacetime case, or three
in the canonical case The Dirac Algorithm itself also needs to be rendered TRi; this does not in any way alter its

60ne might augment this to a quadruple by considering varying the type of group action of g on the tangent space T((]).
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function or outcome. See [87] for a full combined implementation of the first three facets of the Problem of Time’s
details.

This account tightens presentation of the Generalized Lie Algorithm as a generalization of the Dirac Algorithm
relative to [83, 87, 90]. While I have presented the subcases of the 2-block split before [68, 75, 77, 83, 87] that was
separated out into layers and with lesser use of principles to cut down on the options. These improvements represent
a major change in the overall shape of the subject, and to the content, clarity and efficiency of its exposition.

This two Lie aspect implementation — of Relationalism and Closure — works out for RPM and GR. It does not work
out for Gauge Theory in isolation, since this does not possess Temporal Relationalism; upon coupling Gauge Theory
to GR, however, success returns. Pure GR’s constraints (including with minimally coupled matter) moreover close
not as a Lie algebra but as a Lie algebroid: the Dirac algebroid.

This position reached, each of Assignment of Observables and Spacetime Construction can be considered as separate
extensions. Le. the two leaves of the Lie claw digraph, as covered in [94, 95] respectively.

Acknowledgments I thank Professor Chris Isham, Dr Przemyslaw Malkiewicz, Professor Don Page, participants at
the 2020 Problem of Time Summer School for discussions, and Dr Jeremy Butterfield, Professor Malcolm MacCallum,
Professor Reza Tavakol and Professor Enrique Alvarez for support with my career. Part of this work was done at
DAMTP Cambridge, APC Université Paris VII, IFT Universidad Autonoma de Madrid and Peterhouse Cambridge.
This work could have not been carried out if Cambridge’s Moore Library (Mathematics) did not have 24/7 access,
a matter in which Professor Stephen Hawking was pivotal. I finally wish to pay my respects to Professor Stephen
Hawking, as well as to Dr John Stewart, who had strongly encouraged my study of Lie derivatives, and Professor
John Barrow, who hosted me in DAMTP Cambridge in 2013-2014.

References

[1] G.W. Leibniz, The Metaphysical Foundations of Mathematics (University of Chicago Press, Chicago 1956) originally dating to 1715;
see also The Leibnitz—Clark Correspondence, ed. H.G. Alexander (Manchester 1956), originally dating to 1715 and 1716.

[2] W.R. Hamilton, On a General Method in Dynamics. Phil. Transac. Roy. Soc. 124 (1834).
[3] C.G.J. Jacobi first considered the identity now named after him in approximately 1840.

[4] C.G.J. Jacobi, Lectures on Dynamics (1842-1843) (Reimer, Berlin 1866);

a recent edition of his 1848 book on Analytic Mechanics is Vorlesungen tber analytische Mechanik Dokumente zur Geschichte der
Mathematik [Documents on the History of Mathematics 8 (Deutsche Mathematiker Vereinigung, Freiburg 1996).

[5] R.F.A. Clebsch, “Ueber die Simultane Integration Linearer Partieller Differentialgleichungen”, J. Reine. Angew. Math. (Crelle) 65
257 (1866).

[6] E. Mach, Die Mechanik in ihrer Entwickelung, Historisch-kritisch dargestellt (J.A. Barth, Leipzig 1883). An English translation is
The Science of Mechanics: A Critical and Historical Account of its Development Open Court, La Salle, Ill. 1960).

[7] S. Lie and F. Engel, Theory of Transformation Groups Vols I to III (Teubner, Leipzig 1888-1893);
for an English translation with modern commentary of Volume I of [7] see J. Merker (Springer, Berlin 2015), arXiv:1003.3202.

[8] W. Killing, “Concerning the Foundations of Geometry”, J. Reine Angew Math. (Crelle) 109 121 (1892).
[9] P.A.M. Dirac, “On the Theory of Quantum Mechanics”. Proc. Royal Soc. A112 661 (1926).
[10] J.L. Synge, “On the Geometry of Dynamics”, Philos. Trans. Royal Soc. London 226 31 (1927).
[11] L.P. Eisenhart, Continuous Groups of Transformations (Princeton University Press, Princeton 1933).
[12] E.P. Wigner, “On Unitary Representations of the Inhomogeneous Lorentz Group”, Ann. Math. 40 149 (1939).
[13] C. Lanczos, The Variational Principles of Mechanics (University of Toronto Press, Toronto 1949).
(14] P.A.M. Dirac, “Generalized Hamiltonian Dynamics”, Canad. J. Math. 2 129 (1950).
[15] P.A.M. Dirac, “The Hamiltonian Form of Field Dynamics”, Canad. J. Math. 3 1 (1951).
[16] E. Inonii and E.P. Wigner, “On the Contraction of Groups and their Representations”, Proc. Nat. Acad. Sci. (U.S.) 39 510 (1953).
[17] K. Yano, Theory of Lie Derivatives and its Applications (North-Holland, Amsterdam 1955).
[18] E. Cartan, Collected Works (Gauthier—Villars, Paris 1955).

[19] P.A.M. Dirac, “Generalized Hamiltonian Dynamics”, Proceedings of the Royal Society of London A 246 326 (1958).

19



[20]
(21]
22]
(23]
24]
[25]
[26]

37]
(38]
(39]

[40]
[41]

[42]

[43]
[44]

[45]

[46]

(47]

(48]

[49]

[50]

[54]

P.A.M. Dirac, “The Theory of Gravitation in Hamiltonian Form”, Proceedings of the Royal Society of London A 246 333 (1958).
E.J. Saletan, Contraction of Lie Groups, J. Math. Phys. 2 1 (1961).

N. Jacobson, Lie Algebras (Wiley, Chichester 1962, reprinted by Dover, New York 1979).

G. Rinehart, “Differential Forms for General Commutative Algebras”, Trans. Amer. Math. Soc. 108 195 (1963).

G. Mackey, Mathematical Foundations of Quantum Mechanics (Benjamin, New York 1963).

P.A.M. Dirac, Lectures on Quantum Mechanics (Yeshiva University, New York 1964).

J.-P. Serre, Lie Algebras and Lie Groups (Benjamin, New York 1965);
Complex Semisimple Lie Algebras (Springer, New York 1966).

H. Bacry and J.-M. Lévy-Leblond, “Possible Kinematics”, J. Math. Phys. 9 1605 (1968).

J.A. Wheeler, in Battelle Rencontres: 1967 Lectures in Mathematics and Physics ed. C. DeWitt and J.A. Wheeler (Benjamin, New
York 1968).

B.S. DeWitt, “Quantum Theory of Gravity. I. The Canonical Theory.” Phys. Rev. 160 1113 (1967).

C.W. Misner, “Quantum Cosmology. I”, Phys. Rev 186 1319 (1969).

K. Yano, Integral Formulas in Riemannian Geometry (Dekker, New York 1970).

S. Kobayashi, Transformation Groups in Differential Geometry (Springer—Verlag, Berlin 1972).

C.W. Misner, “Minisuperspace” in Magic Without Magic: John Archibald Wheeler ed. J. Klauder (Freeman, San Francisco 1972).

V. Moncrief and C. Teitelboim, “Momentum Constraints as Integrability Conditions for the Hamiltonian Constraint in General
Relativity”, Phys. Rev. D6 966 (1972).

C. Teitelboim, “How Commutators of Constraints Reflect Spacetime Structure”, Ann. Phys. N.Y. 79 542 (1973).

R. Gilmore, Lie Groups, Lie Algebras, and Some of Their Applications (Wiley, New York 1974, reprinted by Dover, New York
2002).

J. Sniatycki, “Dirac Brackets in Geometric Dynamics”, Ann. Inst. H. Poincaré 20 365 (1974).
S.A. Hojman, K.V. Kuchaf and C. Teitelboim, “Geometrodynamics Regained”, Ann. Phys. N.Y. 96 88 (1976).

C.J. Isham, “Some Quantum Field Theory Aspects of the Superspace Quantization of General Relativity”, Proc. R. Soc. Lond.
A351 209 (1976).

C. Teitelboim, “Supergravity and Square Roots of Constraints”, Phys. Rev. Lett. 38 1106 (1977).
V.I. Arnol’d, Mathematical Methods of Classical Mechanics (Springer, New York 1978).

C. Teitelboim, “The Hamiltonian Structure of Spacetime”, in General Relativity and Gravitation: One Hundred Years after the
Birth of Albert Einstein Vol 1 ed. A. Held (Plenum Press, New York 1980).

Y. Choquet-Bruhat, C. DeWitt-Morette and M. Dillard-Bleick, Analysis, Manifolds and Physics Vol. 1 (Elsevier, Amsterdam 1982).
J.B. Barbour and B. Bertotti, “Mach’s Principle and the Structure of Dynamical Theories”, Proc. Roy. Soc. Lond. A382 295 (1982).

C.J. Isham, “Topological and Global Aspects of Quantum Theory”, in Relativity, Groups and Topology II, ed. B. DeWitt and R.
Stora (North-Holland, Amsterdam 1984).

P. Goddard, A. Kent, and D. Olive, “Unitary Representations of the Virasoro and Super-Virasoro Algebras”, Comm. Math. Phys.
103 105 (1986).

M. Henneaux and C. Teitelboim, Quantization of Gauge Systems (Princeton University Press, Princeton 1992).

K.V. Kuchat, “Time and Interpretations of Quantum Gravity”, in Proceedings of the 4th Canadian Conference on General Relativity
and Relativistic Astrophysics ed. G. Kunstatter, D. Vincent and J. Williams (World Scientific, Singapore 1992).

C.J. Isham, “Canonical Quantum Gravity and the Problem of Time”, in Integrable Systems, Quantum Groups and Quantum Field
Theories ed. L.A. Ibort and M.A. Rodriguez (Kluwer, Dordrecht 1993), gr-qc/9210011.

K.V. Kuchat, “Canonical Quantum Gravity”, in General Relativity and Gravitation 1992, ed. R.J. Gleiser, C.N. Kozamah and
O.M. Moreschi M (Institute of Physics Publishing, Bristol 1993), gr-qc/9304012.

J.B. Barbour, “The Timelessness of Quantum Gravity. I. The Evidence from the Classical Theory”, Class. Quant. Grav. 11 2853
(1994).

I. Vaisman, Lectures on the Geometry of Poisson Manifolds, (Birkhduser, Basel 1994).

J.B. Barbour, “GR as a Perfectly Machian Theory”, in Mach’s Principle: From Newton’s Bucket to Quantum Gravity ed. J.B.
Barbour and H. Pfister (Birkhéuser, Boston 1995).

S. Weinberg, The Quantum Theory of Fields. Vol I. Foundations. (Cambridge University Press, Cambridge 1995).

20



[55]
[56]

[57]

(58]
[59]
(60]
(61]
(62]

(63]

[70]
[71]
[72]
(73]
[74]

[75]

(78]
[79]

(80]

R.P. Stanley, Enumerative Combinatorics (Cambridge University Press, Cambridge, 1997).
N.P. Landsman, Mathematical Topics between Classical and Quantum Mechanics (Springer—Verlag, New York 1998).

A. Cannas da Silva and A. Weinstein, Geometric Models for Noncommutative Algebras (American Mathematical Society, Berkeley
Mathematics Lecture Notes Series 1999).

P.M. Cohn, Classic Algebra (Wiley, Chichester 2000).

N. 6 Murchadha, “Constrained Hamiltonians and Local-Square-Root Actions”, Int. J. Mod. Phys A20 2717 (2002).

E. Anderson, “Strong-coupled Relativity without Relativity”, Gen. Rel. Grav. 36 255 (2004), gr-qc/0205118.

I. Moerdijk and J. Mréun, Introduction to Foliations and Lie Groupoids (Cambridge University Press, Cambridge 2003).
W. Fulton and J. Harris, Representation Theory. A First Course (Springer, New York 2004).

M. Crainic and I. Moerdijk, “Deformations of Lie Brackets: Cohomological Aspects”, J. European Math. Soc. 10 4 (2008),
arXiv:math/0403434.

A F. Beardon, Algebra and Geometry (Cambridge University Press, Cambridge 2005).

A. Gracia-Saz and R.A. Mehta, “Lie Algebroid Structures on Double Vector Bundles and Representation Theory of Lie Algebroids”,
Adv. Math 223 1236 (2010), arXiv:0810.006.

L.B. Szabados, “Quasi-Local Energy-Momentum and Angular Momentum in GR: A Review Article”, Living Rev. Rel. 7 4 (2004);
12 4 (2009).

E. Anderson, “The Problem of Time”, in Classical and Quantum Gravity: Theory, Analysis and Applications ed. V.R. Frignanni
(Nova, New York 2011), arXiv:1009.2157. + for Intro paragraph +

E. Anderson, “The Problem of Time and Quantum Cosmology in the Relational Particle Mechanics Arena”, arXiv:1111.1472.

M. Bojowald, Canonical Gravity and Applications: Cosmology, Black Holes, and Quantum Gravity (Cambridge University Press,
Cambridge 2011).

E. Anderson, “Problem of Time”, Annalen der Physik, 524 757 (2012), arXiv:1206.2403.

J.M. Lee, Introduction to Smooth Manifolds 2nd Ed. (Springer, New York 2013).

E. Anderson and F. Mercati, “Classical Machian Resolution of the Spacetime Construction Problem”, arXiv:1311.6541.
C. Laurent-Gengoux, A. Pichereau and P. Vanhaecke, Poisson Structures (Springer-Verlag, Berlin 2013).

E. Anderson, “Beables/Observables in Classical and Quantum Gravity”, SIGMA 10 092 (2014), arXiv:1312.6073.

E. Anderson, “Six New Mechanics corresponding to further Shape Theories”, Int. J. Mod. Phys. D 25 1650044 (2016),
arXiv:1505.00488.

E. Anderson, “On Types of Observables in Constrained Theories”, arXiv:1604.05415.

E. Anderson, The Problem of Time. Quantum Mechanics versus General Relativity, (Springer International 2017) Fundam. Theor.
Phys. 190 (2017) 1-920 DOI: 10.1007/978-3-319-58848-3.

E. Anderson, “A Local Resolution of the Problem of Time”, arXiv:1809.01908. + Intro-ref.
E. Anderson, “Geometry from Brackets Consistency”, arXiv:1811.00564.

E. Anderson, “Shape Theories. I. Their Diversity is Killing-Based and thus Nongeneric”, arXiv:1811.06516.
“II. Compactness Selection Principles”, arXiv:1811.06528.
“III. Comparative Theory of Backgound Independence”, arXiv:1812.08771.

E. Anderson, “A Local Resolution of the Problem of Time. I. Introduction and Temporal Relationalism”, arXiv 1905.06200.
“II. Configurational Relationalism”, arXiv 1905.06206.

E. Anderson, “A Local Resolution of the Problem of Time. III. The other classical facets piecemeal”, arXiv 1905.06212.
“IV. Quantum outline and piecemeal Conclusion”, arXiv 1905.06294.

“V. Combining Temporal and Configurational Relationalism for Finite Theories”, arXiv:1906.03630.

“VI. Combining Temporal and Configurational Relationalism for Field Theories and GR”, arXiv:1906.03635.

“VII. Constraint Closure”, arXiv:1906.03641.

“VIII. Expression in Terms of Observables”, arXiv:2001.04423

“IX. Spacetime Reconstruction”; arXiv:1906.03642.

“XIV. Grounding on Lie’s Mathematics”, arXiv:1907.13595.

21



[91] E. Anderson, “Lie Theory suffices to understand, and Locally Resolve, the Problem of Time”, arXiv:1911.01307.
[92] E. Anderson, “Comparative Theory of Background Independence, arXiv:1911.05678.

[93] E. Anderson, “Lie Theory suffices for Local Classical Resolution of the Problem of Time. 0. Preliminary Relationalism as implemented
by Lie Derivatives”, previous entry published in this blog.

[94] E. Anderson, “Lie Theory suffices for Local Classical Resolution of Problem of Time. 2. Observables, as implemented by Function
Spaces of Lie Bracket Commutants”, forthcoming.

[95] E. Anderson, “Lie Theory suffices for Local Classical Resolution of Problem of Time. 3. Constructability, as implemented by
Deformations in the presence of Rigidity”, forthcoming.

22



